Timetable, Stand: 26.04.2018
L - lecture, E - examples class, S - seminar

only courses in mathematics
Business Mathematics Master
summer term 2018
Stunde
Montag
Dienstag
Mittwoch
Donnerstag
Freitag
8-10
E - Higher Analysis I
Sukaylo
SR 225 CZ
L - Stochastic Analysis
Ankirchner
R 3517 EAP
L - Stochastic Analysis
Ankirchner
R 3517 EAP

LE - Computational Science II

Zumbusch
R 3310 EAP

S - Continuous Optimation
L÷hne
R 3325 EAP
L - Higher Analysis I
Lenz
HS 4 A

LE - Computational Science II

Zumbusch
R 3310 EAP
LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)
Pavlyukevich
SR 123 CZ
10-12
L - Topology and Measure
Rauch
SR 121 AB 4


L - Higher Analysis I
Lenz
HS 4 A

LE - Convex Optimization
Schneider
R 3325 EAP


S - Computability Probability
Ankirchner
WinPool 2 EAP



LE - Convex Optimization
Schneider
R 3325 EAP

V- Math. Methoden der klass. Mechanik
(German)
Matveev

SR 121 AB 4

LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)
Pavlyukevich
SR 123 CZ
LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)
Pavlyukevich
R 3517 EAP


12-14
LE - Vector Optimization
L÷hne
SR 131 CZ

▄ - Math. Methoden der klass. Mechanik
(German)
NN
R 3517 EAP


V - Math. Methoden der klass. Mechanik
(German)
Matveev
SR 121 AB 4

E - Monte Carlo Methods
Novak
SR 385 CZ

S - Discrete Optimization
Bńrthel
R 3310 EAP
L - Monte Carlo Methods
Novak
HS 4 A


L - Time Series Analysis
Neumann
SR 131 CZ
14-16

L - Monte Carlo Methods
Novak
HS 4 A


E - Stochastic Analysis
NN
SR 123 CZ
L - LÚvy-Processes + LÚvy driven SDES
Pavlyukevich
SR 123 CZ

L - Random Dynamical Systems
Schmalfu▀
R 3325 EAP

S - Computational Science

Zumbusch
R 3310 EAP
 

16-18
S - Probability
Ankirchner
WinPool 1 EAP 


LE - Vector Optimization
L÷hne
SR 131 CZ
S - Numerical Analysis
Novak
SR 121 AB 4
L - Time Series Analysis
Neumann
SR 123 CZ