Timetable: 26.04.2018
L - lecture, E - examples class, S - seminar

only courses in mathematics
Mathematics Master
summer term 2018
Stunde
Montag
Dienstag
Mittwoch
Donnerstag
Freitag
8-10

V▄ - Fraktale Geometrie
(German)
Rauch
HS 3 A

L - Stochastic Analys
is
Ankirchner
R 3517 EAP

LE - Stochastic Analysis
Ankirchner
R 3517 EAP

LE - Computational Science II
Zumbusch
R 3310 EAP

S - Continuous Optimization
L÷hne
R 3325 EAP
LE - Computational Science II
Zumbusch
R 3310 EAP

V▄ - Fraktale Geometrie
(German)
Rauch
HS 3 A
L - Stochastics II
Neumann
R 3517 EAP

LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)
Pavlyukevich
SR 123 CZ
10-12
L - Topology and Measure
Rauch
SR 121 AB 4
L - C*-Algebren
Hasler
LH 5 A

LE - Convex Optimization
Schneider
R 3325 EAP


S - Analysis
Lenz, Schmidt
HS 5 A

S - Computability Probability
Ankirchner
WinPool 2 EAP

LE - Convex Optimization
Schneider
R 3325 EAP

L - Stochastics II

Neumann
SR 114 AB 4

LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)
Pavlyukevich
SR 121 CZ

S - Analysis
Oertel-Jńger
R 3517 EAP
V▄ - Fraktale Geometrie
(German)
Rauch
HS 3 A

LE - Stochastic Processes in Continuous Time (Stoch. Proc. II)

Pavlyukevich
R 3517 EAP

12-14
L - Approximation Theory I
Sickel
HS 1 A

LE - Vector Optimization
L÷hne
SR 131 CZ
E - Approximation Theory I
Sickel
SR 114 AB 4
LE - Lie-Groups and Lie-Algebren
Wannerer
HS 5 A

E - Monte Carlo Methods
Novak
SR 385 CZ

S - Discrete Optimization
Bńrthel
R 3310 EAP
L - Monte Carlo Methods
Novak
HS 4 A


L - Time Series Analysis
Neumann
SR 131 CZ
14-16
LE - Lie-Groups and Lie-Algebren
Wannerer
HS 5 A


L - Monte Carlo Methods
Novak
HS 4 A


L - Approximation Theorie I
Sickel
HS 1 A

E - Stochastics II

Wechsung
SR 130 CZ 

E - Stochastic Analysis
NN
SR 123 CZ
L - LÚvy-Processes + LÚvy driven SDES
Pavlyukevich
SR 123 CZ

L - Random Dynamical Systems
Schmalfu▀
R 3325 EAP

S - Computational Science

Zumbusch
R 3310 EAP
S - Theoretical Informatics Unplugged
Giesen
R 3325 EAP
16-18
L - C*-Algebren
Hasler
HS 5 A

S - Probability
Ankirchner
WinPool 1 EAP 

L - Topological + Symbolic Dynamics
Fuhrmann
SR 121 AB 4


LE - Vector Optimization

L÷hne
SR 131 CZ
L - Topological + Symbolic Dynamics
Fuhrmann
HS 5 A


S - Numerical Analysis

Novak
SR 121 AB 4
L - Time Series Analysis
Neumann
SR 123 CZ