2-Blocks with minimal nonabelian defect groups III

Benjamin Sambale*

June 6, 2015

Abstract

We prove that two 2-blocks of (possibly different) finite groups with a common minimal nonabelian defect group and the same fusion system are isotypic (and therefore perfectly isometric) in the sense of Broué. This continues former work by [Cabanes-Picaronny, 1992], [Sambale, 2011] and [Eaton-Külshammer-Sambale, 2012].

Keywords: minimal nonabelian defect groups, perfect isometries, isotypies

AMS classification: 20C15, 20C20

1 Introduction

Since its appearance in 1990, Broué’s Abelian Defect Conjecture gained much attention among representation theorists. On the level of characters it predicts the existence of a perfect isometry between a block with abelian defect group and its Brauer correspondent. These blocks have a common defect group and the same fusion system. Although Broué’s Conjecture is false for nonabelian defect groups (see [4]), one can still ask if perfect isometries or even isotypies exist. We affirmatively answer this question for \(p = 2 \) and minimal nonabelian defect groups (see Theorem 9 below). These are the nonabelian defect groups such that any proper subgroup is abelian. Doing so, we verify the character-theoretic version of Rouquier’s Conjecture [17, A.2] in this special case (see Corollary 10 below). At the same time we provide a new infinite family of defect groups supporting a blockwise \(Z^* \)-Theorem.

By Rédei’s classification of minimal nonabelian \(p \)-groups, one has to consider three distinct families of defect groups. For two of these families the result already appeared in the literature (see [3, 19, 5]). Hence, it suffices to handle the remaining family which we will do in the next section. The proof of the main result is an application of Horimoto-Watanabe [10, Theorem 2]. The last section of the present paper also contains a related result for the nonabelian defect group of order 27 and exponent 9.

Our notation is fairly standard. We consider blocks \(B \) of finite groups with respect to a \(p \)-modular system \((K, O, F)\) where \(O \) is a complete discrete valuation ring with quotient field \(K \) of characteristic 0 and field of fractions \(F \) of characteristic \(p \). As usual, we assume that \(K \) is “large” enough and \(F \) is algebraically closed. The number of irreducible ordinary characters (resp. Brauer characters) of \(B \) is denoted by \(k(B) \) (resp. \(l(B) \)). Moreover, \(k_i(B) \) is the number of those irreducible characters of \(B \) which have height \(i \geq 0 \). For other results on block invariants and fusion systems we often refer to [20]. Moreover, for the definition and construction of perfect isometries we follow [11, 8]. A cyclic group of order \(n \in \mathbb{N} \) is denoted by \(C_n \).

*Institut für Mathematik, Friedrich-Schiller-Universität, 07743 Jena, Germany, benjamin.sambale@uni-jena.de
2 A class of minimal nonabelian defect groups

Let B be a non-nilpotent 2-block of a finite group G with defect group

$$D = \langle x, y \mid x^{2^r} = y^2 = [x, y] = [x, x, y] = [y, x, y] = 1 \rangle \cong C_2^2 \times C_{2^r}$$

where $r \geq 2$, $[x, y] := xyx^{-1}y^{-1}$ and $[x, x, y] := [x, [x, y]]$.

We have already investigated some properties of B in [19], and later gave simplified proofs in [20, Chapter 12]. For the convenience of the reader we restate some of these results.

Lemma 1 ([20 Lemma 12.3]). Let $z := [x, y]$. Then the following holds:

(i) $\Phi(D) = Z(D) = \langle x^2, z \rangle \cong C_{2^{r-1}} \times C_2$.

(ii) $D' = \langle z \rangle \cong C_2$.

(iii) $|\text{Irr}(D)| = 5 \cdot 2^{r-1}$.

Recall that a (saturated) fusion system \mathcal{F} on a p-group P determines the following subgroups:

$$Z(\mathcal{F}) := \{x \in P : x \text{ is fixed by every morphism in } \mathcal{F}\}$$

$$\text{fac}(\mathcal{F}) := \{f(x)x^{-1} : x \in Q, f \in \text{Aut}_F(Q)\}$$

$$\text{hyp}(\mathcal{F}) := \{f(x)x^{-1} : x \in Q, f \in O^p(\text{Aut}_F(Q))\}$$

Lemma 2. The fusion system \mathcal{F} of B is the constrained fusion system of the finite group $A_4 \times C_{2^r}$ where C_{2^r} acts as a transposition in $\text{Aut}(A_4) \cong S_4$. In particular, B has inertial index 1 and $Q := \langle x^2, y, z \rangle \cong C_{2^{r-1}} \times C_2$ is the only \mathcal{F}-essential subgroup of D. Moreover, $\text{Aut}_F(Q) \cong S_3$. Without loss of generality, $Z(\mathcal{F}) = \langle x^2 \rangle$ and $\text{hyp}(B) = \text{fac}(B) = \text{fac}(\mathcal{F}) = \langle y, z \rangle$.

Proof. We have seen in [20, Proposition 12.7] that \mathcal{F} is constrained and coincides with the fusion system of $A_4 \times C_{2^r}$. The construction of the semidirect product $A_4 \rtimes C_{2^r}$ is slightly different in [20], but it is easy to see that both constructions give isomorphic groups. The remaining claims follow from the proof of [20, Proposition 12.7].

By a result of Watanabe [25, Theorem 3 and Lemma 3], the hyperfocal subgroup of a 2-block is trivial or non-cyclic. Hence, our situation with a Klein-four (hyper)focal subgroup represents the first non-trivial example in some sense. Recall that a B-subsection is a pair (u, b_u) such that $u \in D$ and b_u is a Brauer correspondent of B in $C_G(u)$.

Lemma 3. The set $R := Z(D) \cup \{x^iy^j : i, j \in \mathbb{Z}, i \text{ odd}\}$ is a set of representatives for the \mathcal{F}-conjugacy classes of D with $|R| = 2^{r+1}$. For $u \in R$ let (u, b_u) be a B-subsection. Then b_u has defect group $C_D(u)$. Moreover, $l(b_u) = 1$ whenever $u \in R \setminus \{x^2\}$.

Proof. By Lemma 2 it is easy to see that R is in fact a set of representatives for the \mathcal{F}-conjugacy classes of D. Observe that $\langle u \rangle$ is fully \mathcal{F}-normalized for all $u \in R$. Hence, by [20, Lemma 1.34], b_u has defect group $C_D(u)$ and fusion system $\mathcal{F} \langle \langle u \rangle \rangle$. It is easy to see that $C_D(\langle u \rangle)$ is trivial unless $u \in Z(\mathcal{F}) = \langle x^2 \rangle$. This shows $l(b_u) = 1$ for $u \in R \setminus \{x^2\}$.

Theorem 4 ([20, Theorem 12.4]). We have $k(B) = 5 \cdot 2^{r-1}$, $k_0(B) = 2^{r+1}$, $k_1(B) = 2^{r-1}$ and $l(B) = 2$.

Proof. By Lemma 2, we have $|D : \text{fac}(B)| = 2^r$. In particular, $2^r \mid k_0(B)$ by [16, Theorem 1]. Moreover, [11, Theorem 1.1] implies $2^{r+1} \leq k_0(B)$. By Lemma 3 we have $l(b_2) = 1$. Thus, we obtain $k_0(B) = 2^{r+1}$ by a result of Robinson (see [23, Theorem 4.12]). In order to determine $l(B)$, we use induction on r. Let $u := x^2$. Then b_u dominates a block b_u of $C_G(u)/\langle u \rangle$ with defect group $\overline{D} := D/\langle u \rangle \cong D_8$ and fusion system $\overline{\mathcal{F}} := \mathcal{F}/\langle u \rangle$. By [13, Theorem 6.3], $(x^2, y, z)/\langle u \rangle \cong C_2^2$ is the only $\overline{\mathcal{F}}$-essential subgroup of \overline{D}. Therefore, a result of Brauer (see [20, Theorem 8.1]) shows that $l(b_u) = l(b_{u}) = 2$. By Lemma 5 and [20, Theorem 1.35] it follows that
Now let \(|Z(D) : Z(D) \cap \text{foc}(B)| = 2^{r-1} \), we have \(2^{r-1} \mid k_i(B) \) for \(i \geq 1 \) by [10, Theorem 2]. Thus, by [13, Theorem 3.4] we obtain
\[
2^{r+2} \leq k_0(B) + 4(k(B) - k_0(B)) \leq \sum_{i=0}^{\infty} k_i(B)2^{2i} \leq |D| = 2^{r+2}.
\]
This gives \(k_1(B) = 2^{r-1} \) and \(k(B) = k_0(B) + k_1(B) = 5 \cdot 2^{r-1} \). In case \(r = 2 \), [20, Theorem 1.35] implies
\[
l(b) = k(B) - \sum_{b \neq u \in R} l(b_u) = 10 - 8 = 2.
\]
Now let \(r \geq 3 \) and \(1 \neq \langle u \rangle < \langle x^2 \rangle \). Then \(b_u \) as above has the same type of defect group as \(B \) except that \(r \) is smaller. Hence, induction gives \(l(b_u) = l(b_\overline{u}) = 2 \). Now the claim \(l(B) = 2 \) follows again by [20, Theorem 1.35].

In the following results we denote the set of irreducible characters of \(B \) of height \(i \) by \(\text{Irr}_i(B) \).

Proposition 5 ([20, Proposition 12.9]). The set \(\text{Irr}_0(B) \) contains four 2-rational characters and two families of 2-conjugate characters of size \(2^i \) for every \(i = 1, \ldots, r - 1 \). The characters of height 1 split into two 2-rational characters and one family of 2-conjugate characters of size \(2^i \) for every \(i = 2, \ldots, r - 2 \).

Proposition 6. There are 2-rational characters \(\chi_i \in \text{Irr}(B) \) for \(i = 1, 2, 3 \) such that
\[
\text{Irr}_1(B) = \{ \chi_i \cdot \lambda : i = 1, 2, \lambda \in \text{Irr}(D/\text{foc}(B)) \},
\]
\[
\text{Irr}_1(B) = \{ \chi_3 \cdot \lambda : \lambda \in \text{Irr}(Z(D)/\text{foc}(B)) \}.
\]
In particular, the characters of height 1 have the same degree and \(\mid \{ \chi(1) : \chi \in \text{Irr}_0(B) \} \mid \leq 2 \).

Proof. We have already seen in the proof of Theorem 4 that the action of \(D/\text{foc}(B) \) on \(\text{Irr}_0(B) \) via the *-construction has two orbits, and the action of \(Z(D)/\text{foc}(B) \) on \(\text{Irr}_1(B) \) is regular. By Proposition 5 we can choose 2-rational representatives for these orbits. Notice that we identify the sets \(\text{Irr}(D/\text{foc}(B)) \) and \(\text{Irr}(Z(D)/\text{foc}(B)) \) with subsets of \(\text{Irr}(D) \) in an obvious manner.

In the situation of Proposition 6 it is conjectured that \(\chi_1(1) \neq \chi_2(1) \) (see [14]).

Proposition 7 ([20, Proposition 12.8]). The Cartan matrix of \(B \) is given by
\[
2^{r-1} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
\]
up to basic sets.

Observe that Proposition 7 also gives the Cartan matrix for the defect group \(D_8 \) and the corresponding fusion system (this would be the case \(r = 1 \)).

Now we are in a position to obtain the generalized decomposition matrix of \(B \). This completes partial results in [19, Section 3.3].

Proposition 8. Let \(R \) and \(\chi_i \) be as in Lemma 3 and Proposition 7 respectively. Then there are basic sets for \(b_u \ (u \in R) \) and signs \(\epsilon, \sigma \in \{ \pm 1 \} \) such that the generalized decomposition numbers of \(B \) have the following form
\[
\begin{array}{c|cccc}
\chi & x^{2i} & x^{2i} & x^{2i+1} & x^{2i+1} \\
\hline
\chi_{11} & (1, 0) & 1 & 1 & 1 \\
\chi_{12} & (0, \epsilon) & \epsilon & \epsilon & -\epsilon \\
\chi_{13} & (\sigma, \sigma) & -2\sigma & 0 & 0 \\
\end{array}
\]
Proof. Since the Galois group of $\mathbb{Q}(e^{2\pi i/2^n})$ over \mathbb{Q} acts on the columns of the generalized decomposition matrix (cf. Proposition 5), we only need to determine the numbers $d_{u,\varphi}^e$ for $u \in \{x, xy, x^2, z\}$ ($i = 1, 2, 3, j = 1, \ldots, r$). First let $u = x$. Then the orthogonality relations show that

$$2^r|d_{x,\varphi}^e|^2 + 2^r|d_{x,\varphi}^{e-1}|^2 = 2^{r+1}.$$

Since χ_1 and χ_2 have height 0, we have $d_{x,\varphi}^e \neq 0 \neq d_{x,\varphi}^{e-1}$ (see [20 Proposition 1.36]). It follows that $d_{x,\varphi}^e = \pm 1$ for $i = 1, 2$ and $d_{x,\varphi}^e = 0$, because χ_1 is 2-rational. By replacing φ with $-\varphi$ if necessary (i.e. changing the basic set for b_u), we may assume that $d_{x,\varphi}^e = 1$. We set $d_{x,\varphi}^{e-1} = \epsilon_0$. Similarly, we obtain $d_{x,\varphi}^e = 1$, $d_{x,\varphi}^e = \pm 1$ and $d_{x,\varphi}^{e-1} = 0$. Now since the columns d_x^e and d_x^{e-1} of the generalized decomposition matrix are orthogonal, we obtain $d_{x,\varphi}^{e-1} = -\epsilon_0$.

Now let $u = x^2$ for some $j \in \{1, \ldots, r\}$. Let $\text{IBr}(b_u) = \{\varphi_1, \varphi_2\}$ (see proof of Theorem 4). Then by Proposition 7 we get

$$2^r|d_{x^2,\varphi_1}^1|^2 + 2^r|d_{x^2,\varphi_2}^1|^2 + 2^r|d_{x^2,\varphi_1}^{e-1}|^2 = 2^{r+1},$$
$$2^r|d_{x^2,\varphi_1}^1|^2 + 2^r|d_{x^2,\varphi_2}^1|^2 + 2^r|d_{x^2,\varphi_1}^{e-1}|^2 = 3 \cdot 2^{r-1},$$
$$2^r|d_{x^2,\varphi_1}^1|^2 + 2^r|d_{x^2,\varphi_2}^1|^2 + 2^r|d_{x^2,\varphi_1}^{e-1}|^2 = 2^{r-1}.$$

Obviously, $d_{x^2,\varphi_1}^1 d_{x^2,\varphi_2}^1 = 0$ and we may assume that $(d_{x^2,\varphi_1}^1, d_{x^2,\varphi_2}^1) = (1, 0)$ and $(d_{x^2,\varphi_1}^1, d_{x^2,\varphi_2}^1) = (0, \epsilon_1)$ for a sign $\epsilon_j \in \{\pm 1\}$. Moreover, $d_{x^2,\varphi_1}^1 = d_{x^2,\varphi_2}^1 = \sigma_j \in \{\pm 1\}$. Now let $u = x^2$. Then we have

$$2^r|d_{x^2,\varphi_1}^1|^2 + 2^r|d_{x^2,\varphi_2}^1|^2 + 2^r|d_{x^2,\varphi_1}^{e-1}|^2 = 2^{r+2}.$$

It is known that $2 \mid d_{x^2,\varphi}^1 \neq 0$, since b_u is major (see [20 Proposition 1.36]). This gives $d_{x^2,\varphi_1}^1 = 1$, $d_{x^2,\varphi_2}^1 = 1$ and $d_{x^2,\varphi_1}^{e-1} = -\epsilon_2$. By the orthogonality to x^{2i} we obtain that $d_{x^2,\varphi}^1 = -2\sigma_j$ and $d_{x^2,\varphi_1}^{e-1} = \epsilon_j$.

It remains to show that the signs ϵ_j and σ_j do not depend on j. For this we consider characters $\lambda, \psi \in \text{Irr}(D)$ whose values are given as follows

<table>
<thead>
<tr>
<th>x^2</th>
<th>$x^2 z$</th>
<th>x</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Observe that ψ is the inflation of the irreducible character of $D/\langle x^2 \rangle \cong D_4$ of degree 2. It is easy to see that $(\lambda + \psi)(x^{2k}y) = -1 = -1 - 2 = (\lambda + \psi)(x^{2k}z)$ for every $k \in \mathbb{Z}$. It follows that $\lambda + \psi$ is \mathcal{F}-stable, i.e. $(\lambda + \psi)(u) = (\lambda + \psi)(v)$ whenever u and v are \mathcal{F}-conjugate. By Brönn-Leu, $\chi_1 * (\lambda + \psi)$ is a generalized character of B. In particular, the scalar product $(\chi_1 * (\lambda + \psi), \chi_3) = \alpha$ is an integer. This number can be computed by using the so-called contribution numbers $m_{u,\chi_3}^u := d_{u,\chi_3}^1 C_u^{-1} d_{x^2,\varphi}^T$, where C_u is the Cartan matrix of b_u and $d_{x^2,\varphi}$ is the row of the generalized decomposition matrix corresponding to (u, b_u) and x^2. In case $u = x^2$, we have

$$C_u^{-1} = 2^{r-2} \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix}$$

by Proposition 7. This gives $m_{x^2,\chi_3}^u = 2^{-r-1} \sigma_j$. Similarly, $m_{x^2,\chi_3}^u = -2^{-r-1} \sigma_j$ for $u = x^{2i}$. Thus, we obtain

$$(\chi_1 * (\lambda + \psi), \chi_3) = \sum_{u \in R} (\lambda + \psi)(u) m_{x^2,\chi_3}^u = \sum_{u \in \text{Irr}(D)} (\lambda + \psi)(u) m_{x^2,\chi_3}^u = \sum_{j=1}^{r-1} \sigma_j 2^{-r-j-1} = 2^{-r+1} \sigma_j + \sum_{j=1}^{r-1} \sigma_j 2^{-r-j}.$$
3 The main result

Theorem 9. Let B and \bar{B} be 2-blocks of (possibly different) finite groups with a common minimal nonabelian defect group and the same fusion system. Then B and \bar{B} are isotypic (and therefore perfectly isometric).

Proof. We may assume that B is not nilpotent by Broué-Puig [2]. Let D be a defect group of B and \bar{B}. If $|D| = 8$, then the claim follows from [3]. Now suppose that D is given as in [1]. We will attach a tilde to everything associated with \bar{B}. By Proposition [3] and [10] Theorem 2 there is a perfect isometry $I : CF(G, B) \to CF(G, \bar{B})$ where $CF(G, B)$ denotes the space of class functions with basis $Irr(B)$ over K. It remains to show that I is also an isotypy. In order to do so, we follow [3, Section V.2]. For each $u \in D$ let $CF(C_G(u)_2, b_u)$ be the space of class functions on $C_G(u)$ which vanish on the p-singular classes and are spanned by $IBr(b_u)$. The decomposition map $d_G^u : CF(G, B) \to CF(C_G(u)_2, b_u)$ is defined by

$$d_G^u(\chi)(s) := \chi(e_{b_u}us) = \sum_{\varphi \in IBr(b_u)} d_G^u(\varphi)(s)$$

for $\chi \in Irr(B)$ and $s \in C_G(u)_2$ where e_{b_u} is the block idempotent of b_u over O. Then I determines isometries

$$I^u : CF(C_G(u)_2, b_u) \to CF(C_G(u)_2, \bar{b}_u)$$

by the equation $d_G^u \circ I = I^u \circ d_G^u$. Note that I^1 is the restriction of I. We need to show that I^u can be extended to a perfect isometry $\tilde{I}^u : CF(C_G(u), b_u) \to CF(C_G(u), \bar{b}_u)$. Suppose first that b_u is nilpotent. Then by Proposition [3] $d_G^u(\chi_1) = \epsilon \varphi$ and $d_G^u(I(\chi_1)) = \tilde{\epsilon} \tilde{\varphi}$ where $IBr(b_u) = \{ \varphi \}$ and $IBr(\bar{b}_u) = \{ \tilde{\varphi} \}$ for some signs $\epsilon, \tilde{\epsilon} \in \{ \pm 1 \}$. It follows that $I^u(\varphi) = \epsilon \tilde{\epsilon} \tilde{\varphi}$. Let $\psi \in Irr_0(b_u)$ and $\tilde{\psi} \in Irr_0(\bar{b}_u)$ be 2-rational characters. Then it is well-known that $\varphi = d_{C_G(u)}^u(\psi)$ and $Irr(b_u) = \{ \psi \lambda : \lambda \in Irr(D) \}$ (see [2]). Therefore, we may define \tilde{I}^u by $\tilde{I}^u(\psi \lambda) := \epsilon \tilde{\epsilon} \tilde{\varphi}$ for $\lambda \in Irr(D)$. Then \tilde{I}^u is a perfect isometry and

$$\tilde{I}^u(\varphi) = \tilde{I}^u(d_{C_G(u)}^u(\psi)) = d_{C_G(u)}^1(I^u(\psi)) = \epsilon \tilde{\epsilon} d_{C_G(u)}^1(\tilde{\psi}) = \epsilon \tilde{\epsilon} \tilde{\varphi} = I^u(\varphi).$$

Hence, \tilde{I}^u extends I^u. Moreover, \tilde{I}^u does not depend on the generator of $\langle u \rangle$, since the signs ϵ and $\tilde{\epsilon}$ were defined by means of 2-rational characters.

Assume next that b_u is non-nilpotent. Then $u \in \langle x^2 \rangle$ and b_u has defect group D. By Proposition [3] we can choose basic sets φ_1, φ_2 (resp. $\tilde{\varphi}_1, \tilde{\varphi}_2$) for b_u (resp. \bar{b}_u) such that $\varphi_i = d_{C_G(u)}^u(\chi_i)$ and $\tilde{\varphi}_i = d_{C_G(u)}^u(I(\chi_i))$ for $i = 1, 2$. Then $I^u(\varphi_i) = \tilde{\varphi}_i$ for $i = 1, 2$. Since the Cartan matrix of b_u with respect to the basic set φ_1, φ_2 is already fixed (and given by Proposition [7]), we find 2-rational characters $\psi_i \in Irr_0(b_u)$ such that $d_{C_G(u)}^u(\psi_i) = \epsilon_i \varphi_i$ with $\epsilon_i \in \{ \pm 1 \}$ for $i = 1, 2$ (see proof of Proposition [8]). Similarly, one has $\tilde{\psi}_i \in Irr_0(\bar{b}_u)$ such that $d_{C_G(u)}^u(\tilde{\psi}_i) = \tilde{\epsilon}/\tilde{\psi}_i$. Then, by what we have already shown, there exists a perfect isometry $\tilde{I}^u : CF(C_G(u), b_u) \to CF(C_G(u), \bar{b}_u)$ sending ψ_i to $\epsilon_i \tilde{\psi}_i$ for $i = 1, 2$. We have

$$\tilde{I}^u(\varphi_i) = \epsilon_i \tilde{I}^u(d_{C_G(u)}^u(\psi_i)) = \epsilon_i d_{C_G(u)}^1(I^u(\psi_i)) = \tilde{\epsilon}_i d_{C_G(u)}^1(\tilde{\psi}_i) = \tilde{\epsilon}_i = I^u(\varphi_i)$$

for $i = 1, 2$. This shows that \tilde{I}^u extends I^u. Moreover, it is easy to see that \tilde{I}^u does not depend on the generator of $\langle u \rangle$.

Altogether we have proved the theorem if D is given as in [1]. By [20] Theorem 12.4 it remains to handle the case

$$D \cong \langle x, y | x^{2r} = y^2 = [x, y]^2 = [x, x, y] = [y, x, y] = 1 \rangle$$

where $r \geq 2$. Here B and \bar{B} are Morita equivalent and therefore perfectly isometric. However, a Morita equivalence does not automatically provide an isotypy. Nevertheless, in this special case the Morita equivalence is a composition of various “natural” equivalences (namely Fong reductions, Külshammer-Puig reduction and Külshammer’s reduction for blocks with normal defect groups, see [5] proof of Theorem 1]). In particular, the generalized decomposition matrices of B and \bar{B} coincide up to signs (see [21]). Now we can use the same methods as above in order to construct an isotypy. In fact, for every \bar{B}-subsection (u, b_u) one has that b_u is nilpotent or $u = [x, y]$ and b_u Morita equivalent to B (see proof of [19] Proposition 4.3]). We omit the details. □
Corollary 10. Let B be a 2-block of a finite group G with minimal nonabelian defect group $D \not\cong D_8$. Then B is isotypic to a Brauer correspondent in $\text{NG}(\text{hyp}(B))$.

Proof. Let b_B be a Brauer correspondent of B in $D \text{C}_G(D)$. Since $D \text{C}_G(D) \subseteq \text{NG}(\text{hyp}(B))$, the Brauer correspondent $b := b_B^{\text{NG}(\text{hyp}(B))}$ of B has defect group D. By Theorem 9, it suffices to show that B and b have the same inertial quotient. Furthermore, b has defect group as given in (1), then the fusion system is constrained and the automorphisms of the essential subgroup (if it exists) also act on $\text{hyp}(B)$. Hence, B is nilpotent if and only if b is nilpotent. Again the claim follows from Theorem 9.

We remark that Corollary 10 would be false in case $D \cong D_8$. The principal 2-block of $\text{GL}(3,2)$ gives a counterexample. If B is a block of a finite group G with defect group as given in (1), then B is also isotypic to a Brauer correspondent in $\text{C}_G(u)$ where $u \in \mathbb{Z}(F)$. This resembles Glauberman’s Z^*-Theorem.

In the situation of Theorem 9 (or Corollary 10) it is desirable to extend the isotypies to Morita equivalences (as we did in [2]). This is not always possible if $|D| = 8$, since for example the principal 2-blocks of the symmetric groups S_4 and S_5 are not Morita equivalent. Nevertheless, the possible Morita equivalence classes in case $|D| = 8$ are known by Erdmann’s classification of tame algebras [6] (at least over F, cf. [9]). In view of [5] one may still ask if two non-nilpotent 2-blocks with isomorphic defect groups as in Section 2 are Morita equivalent. We will see that the answer is again negative.

Consider the groups $G_1 := A_4 \times C_2$ and $G_2 := A_5 \times C_2$ constructed similarly as in Lemma 2. Then $G_1 / Z(G_1) \cong S_4$ and $G_2 / Z(G_2) \cong S_5$. Let B_i be the principal 2-block of G_i, and let \mathcal{B}_i be the principal 2-block of $G_i / Z(G_i)$ for $i = 1, 2$. Then the Cartan matrix of B_i is just the Cartan matrix of \mathcal{B}_i multiplied by $|Z(G_i)| = 2^{r-1}$. It is known that the Cartan matrices of \mathcal{B}_1 and \mathcal{B}_2 do not coincide (regardless of the labeling of the simple modules). Therefore, B_1 and B_2 are not Morita equivalent.

Nevertheless, the structure of a finite group G with a minimal nonabelian Sylow 2-subgroup P as given in (1) is fairly restricted. More precisely, Glauberman’s Z^*-Theorem implies $x^2 \in Z^*(G)$, and the structure of $G / Z^*(G)$ follows from the Gorenstein-Walter Theorem [7]. In particular, G has at most one nonabelian composition factor by Feit-Thompson.

We use the opportunity to present a related result for $p = 3$ which extends [20] Theorem 8.15.

Theorem 11. Let B and \tilde{B} be non-nilpotent blocks of (possibly different) finite groups both with defect group $C_9 \rtimes C_3$. Then B and \tilde{B} are isotypic.

Proof. As in the proof of Theorem 9 we will make use of Theorem 2. Let

$$D := \langle x, y \mid x^9 = y^3 = 1, yxy^{-1} = x^4 \rangle$$

be a defect group of B, and let F be the fusion system of B. By Stancu [21], B is controlled with inertial index 2, and we may assume that x and x^{-1} are F-conjugate (see proof of [20] Theorem 8.8). Then $\mathcal{R} := \{1, x, x^3, y, y^2, xy, xy^2\}$ is a set of representatives for the F-conjugacy classes of D (see proof of [20] Theorem 8.15). It suffices to show that the generalized decomposition numbers of B are essentially unique (up to basic sets and signs and permutations of rows). Since the Galois group of $\mathbb{Q}(e^{2\pi i/9})$ over \mathbb{Q} acts on the columns of the generalized decomposition matrix, we only need to determine the numbers $d_{\chi \varphi}^u$ for $u \in \{x, x^3, y, xy\}$. By [20] Theorem 8.15 there are four 3-rational characters $\chi_i \in \text{Irr}(B)$ $(i = 1, \ldots, 4)$ such that χ_1, χ_2, χ_3 have height 0 and χ_4 has height 1. Since $\text{soc}(B) = \langle x \rangle$, we see that

$$\text{Irr}(B) = \{\chi_i \ast \lambda : i = 1, 2, 3, \lambda \in \text{Irr}(D/\text{soc}(B))\} \cup \{\chi_4\}.$$

Let $u := x^3$. Then $\text{IBr}(b_u) = \{\varphi\}$ and $d_{\chi \varphi}^u$ are non-zero (rational) integers. Moreover, $d_{\chi \varphi}^u \equiv 0 \pmod{3}$. After permuting χ_1, χ_2 and χ_3 and changing the basic set for b_u if necessary, we may assume that $d_{\chi \varphi}^u = 2,$
$d_{\chi \varphi}^u := \epsilon_1 \in \{ \pm 1 \}, d_{\chi \varphi}^u := \epsilon_2 \in \{ \pm 1 \}$ and $d_{\chi \varphi}^u = 3 \epsilon_3 \in \{ \pm 3 \}$. Now let $u := x$. Then $d_{\chi \varphi}^u = \pm 1$ for $i = 1, 2, 3$ and $d_{\chi \varphi}^u = 0$. We may choose a basic set for b_u such that $d_{\chi \varphi}^u = 1$. Then by the orthogonality relations, $d_{\chi \varphi}^u = -\epsilon_1$ and $d_{\chi \varphi}^u = -\epsilon_2$. Next let $u := y$. Then b_u dominates a block of $C_G(u)/\langle u \rangle$ with cyclic defect group $C_D(u)/\langle u \rangle \cong C_3$ and inertial index 2. This yields $\text{IBr}(b_u) = \{ \varphi_1, \varphi_2 \}$ and the Cartan matrix of b_u is given by

$$
\begin{pmatrix}
3 & 2 & 1 \\
2 & 1 & 2
\end{pmatrix}
$$

(not only up to basic sets, but this is not important here). We can choose a basic set such that $(d_{\chi \varphi}^u, d_{\chi \varphi}^u) = (1, 1), (d_{\chi \varphi}^u, d_{\chi \varphi}^u) = (\sigma_1, 0), (d_{\chi \varphi}^u, d_{\chi \varphi}^u) = (0, \sigma_2)$ and $(d_{\chi \varphi}^u, d_{\chi \varphi}^u) = (0, 0)$ for some signs $\sigma_1, \sigma_2 \in \{ \pm 1 \}$. Finally for $u := xy$ we obtain $d_{\chi \varphi}^u = 1, d_{\chi \varphi}^u = -\sigma_1, d_{\chi \varphi}^u = -\sigma_2$ and $d_{\chi \varphi}^u = 0$ after changing the basic set if necessary. The following table summarizes the results

<table>
<thead>
<tr>
<th>u</th>
<th>x^3</th>
<th>x</th>
<th>y</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{\chi \varphi}^u$</td>
<td>ϵ_1</td>
<td>$(\epsilon_1, 0)$</td>
<td>$(\epsilon_1, 0)$</td>
<td>ϵ_1</td>
</tr>
<tr>
<td>$d_{\chi \varphi}^u$</td>
<td>ϵ_2</td>
<td>$(0, \epsilon_2)$</td>
<td>$(0, \epsilon_2)$</td>
<td>ϵ_2</td>
</tr>
<tr>
<td>$d_{\chi \varphi}^u$</td>
<td>$3 \epsilon_3$</td>
<td>(ϵ_3, ϵ_3)</td>
<td>$-\epsilon_3$</td>
<td>$-\epsilon_3$</td>
</tr>
</tbody>
</table>

It suffices to show that $\epsilon_1 = \sigma_1$ for $i = 1, 2$ (observe that we do not need the ordinary decomposition numbers in order to apply [10 Theorem 2]). For this, let $\lambda \in \text{Irr}(D/(x^3))$ such that $\lambda(x) = e^{2\pi i/3}$ and $\lambda(y) = 1$. Then the generalized character $\psi := \lambda + \overline{\lambda} \cdot 2 \cdot 1_D$ of D is constant on $\langle x \rangle \setminus \langle x^3 \rangle$ and thus F-stable. By [11], $\chi_1 * \psi$ is a generalized character of B and $(\chi_1 * \psi, \chi_2)_G \in \mathbb{Z}$. As in the proof of Theorem [9] we compute

$$(\chi_1 * \psi, \chi_2)_G = \sum_{u \in \mathcal{R}} \psi(u) m_{\chi_1 \chi_2}^u = \psi(x) m_{\chi_1 \chi_x}^x + \psi(xy) m_{\chi_1 \chi_x}^{xy} + \psi(xy^2) m_{\chi_1 \chi_x}^{xy^2} = \frac{1}{3} \epsilon_1 \epsilon_2.$$

This shows $\epsilon_1 = \sigma_1$. Similarly, one gets $\epsilon_2 = \sigma_2$ by computing $(\chi_1 * \psi, \chi_3)_G$. Hence, [10 Theorem 2] gives a perfect isometry $I : \text{CF}(G, B) \to \text{CF}(\hat{G}, \hat{B})$. In order to show that I is also an isotypy, we make use of the notation introduced in the proof of Theorem [9]. Let $u \in D$ such that b_u is nilpotent. Then by the table above, we have $\text{IBr}(b_u) = \{ \pm d_2^u(\chi_2) \}$. Thus, one can extend I^u just as in Theorem [9]. Now suppose that b_u is non-nilpotent and thus $u = y$ (up to inversion). We choose a basic set φ_1, φ_2 for b_u as above such that $d_{\varphi_1}^u(\chi_1) = \varphi_{-1}$ for $i = 2, 3$. Now we have to determine the ordinary decomposition numbers of b_u with respect to φ_1, φ_2. The defect group of b_u is $C_D(y) = \langle x^3, y \rangle \cong C_3 \times C_3$ and $\text{soc}(b_u) = \langle x^3 \rangle$. By Kiyota [12], $k(b_u) = 9$. Therefore, there are 3-rational characters $\psi_i \in \text{Irr}(b_u)$ such that

$$\text{Irr}(b_u) = \{ \psi_i \cdot \lambda : i = 1, 2, 3, \lambda \in \text{Irr}(\langle x^3, y \rangle/\langle x^3 \rangle) \}.$$

By the Cartan matrix of b_u given above (with respect to φ_1, φ_2), it follows immediately that $d_{\varphi_1}^u(\psi_i) = \epsilon_i \varphi_i$ with $\epsilon_i \in \{ \pm 1 \}$ for $i = 1, 2$ after a suitable permutation of ψ_1, ψ_2, ψ_3. Similarly, $d_{\varphi_2}^u(\psi_i) = \epsilon_i \varphi_i$. By a result of Usami [22], there is a perfect isometry $\text{CF}(C_G(u), b_u) \to \text{CF}(C_{\hat{G}}(u), \hat{b}_u)$. However, we need the additional information that ψ_i is mapped to $\pm \psi_i$. In order to show this, we use [10 Theorem 2] again. Observe that $d_{\psi_1}^u(\psi_i) = \zeta d_{\psi_1}^u(\psi_i) = \zeta \epsilon_i \varphi_i$ for a cube root of unity ζ. But since $d_{\psi_1}^u$ is rational, we have $\zeta = 1$. Now an elementary application of the orthogonality relations shows that the generalized decomposition matrix of b_u (in $C_G(u)$) is determined by

<table>
<thead>
<tr>
<th>v</th>
<th>1</th>
<th>y</th>
<th>x^3</th>
<th>x^3y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{\psi_1}^u$</td>
<td>$(\epsilon_1, 0)$</td>
<td>$(\epsilon_1, 0)$</td>
<td>ϵ_1</td>
<td>ϵ_1</td>
</tr>
<tr>
<td>$d_{\psi_2}^u$</td>
<td>$(0, \epsilon_2)$</td>
<td>$(0, \epsilon_2)$</td>
<td>ϵ_2</td>
<td>ϵ_2</td>
</tr>
<tr>
<td>$d_{\psi_3}^u$</td>
<td>(ϵ_3, ϵ_3)</td>
<td>(ϵ_3, ϵ_3)</td>
<td>$-\epsilon_3$</td>
<td>$-\epsilon_3$</td>
</tr>
</tbody>
</table>

It follows that there is a perfect isometry $\tilde{I}^u : \text{CF}(C_G(u), b_u) \to \text{CF}(C_{\hat{G}}(u), \hat{b}_u)$ such that $\tilde{I}^u(\psi_i) = \epsilon_i \epsilon_i \tilde{\psi_i}$ for $i = 1, 2$. Therefore \tilde{I}^u extends I^u. In the proof of Theorem [9] it is also clear that \tilde{I}^u is independent of the choice of the generator of $\langle u \rangle$. This finishes the proof.
The proof method of Theorem 11 also works for other defect groups. In fact, Watanabe [23] showed independently (using more complicated methods) that two p-blocks ($p > 2$) with a common metacyclic, minimal nonabelian defect group and the same fusion system are perfectly isometric. Again, this gives evidence for the character-theoretic version of Rouquier’s Conjecture (see [25, Theorem 2]). As another remark, Holloway-Koshitani-Kunugi [8, Example 4.3] constructed a perfect isometry between the principal 3-block of $G := \text{Aut}(\text{SL}(2,8)) \cong 2G_2(3)$ and its Brauer correspondent. Since G has a Sylow 3-subgroup isomorphic to $C_9 \times C_3$, this is a special case of Theorem 11. Note that in the introduction of Ruengrot [18] it is erroneously stated that these blocks are not perfectly isometric.

Acknowledgment

This work is supported by the German Research Foundation and the Daimler and Benz Foundation. The author thanks Atumi Watanabe for providing a copy of [23]. Moreover, the author thanks Burkhard Külshammer for answering some questions.

References

[23] A. Watanabe, *On blocks of finite groups with metacyclic, minimal non-abelian defect groups*, manuscript.
