The Alperin-McKay Conjecture for metacyclic, minimal non-abelian defect groups

Benjamin Sambale

July 16, 2014

Abstract

We prove the Alperin-McKay Conjecture for all p-blocks of finite groups with metacyclic, minimal non-abelian defect groups. These are precisely the metacyclic groups whose derived subgroup have order p. In the special case $p = 3$, we also verify Alperin’s Weight Conjecture for these defect groups. Moreover, in case $p = 5$ we do the same for the non-abelian defect groups $C_{25} \rtimes C_5^n$. The proofs do not rely on the classification of the finite simple groups.

Keywords: Alperin-McKay Conjecture, metacyclic defect groups

AMS classification: 20C15, 20C20

1 Introduction

Let B be a p-block of a finite group G with respect to an algebraically closed field of characteristic p. Suppose that B has a metacyclic defect group D. We are interested in the number $k_i(B)$ (respectively $k(B)$) of irreducible characters of B (of height $i \geq 0$), and the number $l(B)$ of irreducible Brauer characters of B. If $p = 2$, these invariants are well understood and the major conjectures are known to be true by work of several authors (see [4, 31, 35, 37, 11, 9]). Thus we will focus on the case $p > 2$ in the present work. Here at least Brauer’s $k(B)$-Conjecture, Olsson’s Conjecture and Brauer’s Height Zero Conjecture are satisfied for B (see [14, 43, 38]).

By a result of Stancu [40], B is a controlled block. Moreover, if D is a non-split extension of two cyclic groups, it is known that B is nilpotent (see [7]). Thus we will focus on the case $p > 2$ in the present work. Here at least Brauer’s $k(B)$-Conjecture, Olsson’s Conjecture and Brauer’s Height Zero Conjecture are satisfied for B (see [14, 43, 38]).

By a result of Stancu [40], B is a controlled block. Moreover, if D is a non-split extension of two cyclic groups, it is known that B is nilpotent (see [7]). Then a result by Puig [33] describes the source algebra of B in full detail. Thus we may assume in the following that D is a split extension of two cyclic groups. A famous theorem by Dade [6] handles the case where D itself is cyclic by making use of Brauer trees. The general situation is much harder – even the case $D \cong C_3 \times C_3$ is still open (see [21, 22, 20, 25]). Now consider the subcase where D is non-abelian. Then a work by An [1] shows that G is not a quasisimple group. On the other hand, the algebra structure of B in the p-solvable case can be obtained from Külshammer [27]. If B has maximal defect (i.e. $D \in \text{Syl}_p(G)$), the block invariants of B were determined in [15]. If B is the principal block, Horimoto and Watanabe [20] constructed a perfect isometry between B and its Brauer correspondent in $N_G(D)$.

Let us suppose further that D is a split extension of a cyclic group and a group of order p (i.e. D is the unique non-abelian group with a cyclic subgroup of index p). Here the difference $k(B) - l(B)$ is known from [10]. Moreover, under additional assumptions on G, Holloway, Koshitani and Kunugi [19] obtained the block invariants precisely. In the special case where D has order p^3, incomplete information are given by Hendren [17]. Finally, one has full information in case $|D| = 27$ by work of the present author [38, Theorem 4.5].

In the present work we consider the following class of non-abelian split metacyclic groups

$$ D = \langle x, y \mid x^{p^m} = y^{p^n} = 1, \ yxy^{-1} = x^{1+p^{m-1}} \rangle \cong C_{p^m} \rtimes C_{p^n} \quad (1.1) $$

where $m \geq 2$ and $n \geq 1$. By a result of Rédei (see [24, Aufgabe III.7.22]) these are precisely the metacyclic, minimal non-abelian groups. A result by Knoche (see [21, Aufgabe III.7.24]) implies further that these are exactly the metacyclic groups with derived subgroup of order p. In particular the family includes the non-abelian group with a cyclic subgroup of index p mentioned above. The main theorem of the present paper states that $k_0(B)$
is locally determined. In particular the Alperin-McKay Conjecture holds for B. Recall that the Alperin-McKay Conjecture asserts that $k_0(B) = k_0(b)$ where b is the Brauer correspondent of B in $\text{N}_G(D)$. This improves some of the results mentioned above. We also prove that every irreducible character of B has height 0 or 1. This is in accordance with the situation in $\text{Irr}(D)$. In the second part of the paper we investigate the special case $p = 3$. Here we are able to determine $k(B)$, $k_i(B)$ and $l(B)$. This gives an example of Alperin’s Weight Conjecture and the Ordinary Weight Conjecture. Finally, we determine the block invariants for $p = 5$ and $D \cong C_{25} \times C_{5^m}$ where $n \geq 1$.

As a new ingredient (compared to [35]) we make use of the focal subgroup of B.

2 The Alperin-McKay Conjecture

Let p be an odd prime, and let B be a p-block with split metacyclic, non-abelian defect group D. Then D has a presentation of the form

$$D = \langle x, y \mid x^{p^m} = y^{p^n} = 1, \ yxy^{-1} = x^{1+p^l} \rangle$$

where $0 < l < m$ and $m - l \leq n$. Elementary properties of D are stated in the following lemma.

Lemma 2.1.

(i) $D' = \langle x^p \rangle \cong C_{p^{m-1}}$.

(ii) $Z(D) = \langle x^{p^{m-l}} \rangle \times \langle y^{p^{m-l}} \rangle \cong C_p \times C_{p^{m-1}}$.

Proof. Omitted. □

We fix a Sylow subpair (D, b_D) of B. Then the conjugation of subpairs $(Q, b_Q) \leq (D, b_D)$ forms a saturated fusion system \mathcal{F} on D (see [2, Proposition IV.3.14]). Here $Q \leq D$ and b_Q is a uniquely determined block of $C_G(Q)$. We also have subsections (u, b_u) where $u \in D$ and $b_u := b_{(u)}$. By Proposition 5.4 in [10], \mathcal{F} is controlled. Moreover by Theorem 2.5 in [14] we may assume that the inertial group of B has the form $\text{N}_G(D, b_D)/C_G(D) = \text{Aut}_\mathcal{F}(D) = \langle \text{lnn}(D), \alpha \rangle$ where $\alpha \in \text{Aut}(D)$ such that $\alpha(x) \in \langle x \rangle$ and $\alpha(y) = y$. By a slight abuse of notation we often write $\text{Out}_\mathcal{F}(D) = \langle \alpha \rangle$. In particular the inertial index $e(B) := |\text{Out}_\mathcal{F}(D)|$ is a divisor of $p - 1$. Let

$$\text{foc}(B) := \langle f(a)a^{-1} : a \in Q \leq D, \ f \in \text{Aut}_\mathcal{F}(Q) \rangle$$

be the focal subgroup of B (or of \mathcal{F}). Then it is easy to see that $\text{foc}(B) \subseteq \langle x \rangle$. In case $e(B) = 1$, B is nilpotent and $\text{foc}(B) = D'$. Otherwise $\text{foc}(B) = D$. For the convenience of the reader we collect some estimates on the block invariants of B.

Proposition 2.2. Let B be as above. Then

$$(p^l + p^{l-1} - p^{2l-m-1} - 1 + e(B))p^n \leq k(B) \leq \left(\frac{p^l - 1}{e(B)} + e(B)\right)(p^{n+m-l-2} + p^n - p^{n-2}),$$

$$2p^n \leq k_0(B) \leq \left(\frac{p^l - 1}{e(B)} + e(B)\right)p^n,$$

$$\sum_{i=0}^{\infty} p^{2i}k_i(B) \leq \left(\frac{p^l - 1}{e(B)} + e(B)\right)p^{n+m-l},$$

$$l(B) \geq e(B) \mid p - 1,$$

$$p^n \mid k_0(B), \ p^n-\mathbb{m}+1 \mid k_i(B) \text{ for } i \geq 1,$$

$$k_i(B) = 0 \text{ for } i > 2(m - l).$$

Proof. Most of the inequalities are contained in Proposition 2.1 to Corollary 2.5 in [38]. By Theorem 1 in [36] we have $p^n \mid |D : \text{foc}(B)| \mid k_0(B)$. In particular $p^n \leq k_0(B)$. In case $k_0(B) = p^n$ it follows from [23] that B is nilpotent. However then we would have $k_0(B) = |D : D'| = p^{n+l} > p^n$. Therefore $2p^n \leq k_0(B)$. Theorem 2 in [36] implies $p^{n-\mathbb{m}+1} \mid |Z(D) : Z(D) \cap \text{foc}(B)| \mid k_i(B)$ for $i \geq 1$. □
Now we consider the special case where \(m = l + 1\). As mentioned in the introduction these are precisely the metacyclic, minimal non-abelian groups. We prove the main theorem of this section.

Theorem 2.3. Let \(B\) be a \(p\)-block of a finite group with metacyclic, minimal non-abelian defect groups for an odd prime \(p\). Then

\[
k_0(B) = \left(\frac{p^{m-1} - 1}{e(B)} + e(B) \right) p^n
\]

with the notation from \((1.1)\). In particular the Alperin-McKay Conjecture holds for \(B\).

Proof. By Proposition 2.2 we have

\[
p^n \mid k_0(B) \leq \left(\frac{p^{m-1} - 1}{e(B)} + e(B) \right) p^n.
\]

Thus, by way of contradiction we may assume that

\[
k_0(B) \leq \left(\frac{p^{m-1} - 1}{e(B)} + e(B) - 1 \right) p^n.
\]

We also have

\[
k(B) \geq \left(\frac{p^{m-1} + p^{m-2} - p^{m-3} - 1}{e(B)} + e(B) \right) p^n
\]

from Proposition 2.2. Hence the sum \(\sum_{i=0}^{\infty} p^{2i} k_i(B)\) will be small if \(k_0(B)\) is large and \(k_1(B) = k(B) - k_0(B)\). This implies the following contradiction

\[
\left(\frac{p^{m-1} - 1}{e(B)} + p^2 + e(B) - 1 \right) p^n = \left(\frac{p^{m-1} - 1}{e(B)} + e(B) - 1 \right) p^n + \left(\frac{p^{m-2} - p^{m-3} - 1}{e(B)} + 1 \right) p^{n+2}
\]

\[
\leq \sum_{i=0}^{\infty} p^{2i} k_i(B) \leq \left(\frac{p^{m-1} - 1}{e(B)} + p e(B) \right) p^n < \left(\frac{p^{m-1} - 1}{e(B)} + p^2 \right) p^n.
\]

Since the Brauer correspondent of \(B\) in \(N_G(D)\) has the same fusion system, the Alperin-McKay Conjecture follows.

Isaacs and Navarro [22, Conjecture D] proposed a refinement of the Alperin-McKay Conjecture by invoking Galois automorphisms. We show (as an improvement of Theorem 4.3 in [38]) that this conjecture holds in the special case \(|D| = p^3\) of Theorem 2.3. We will denote the subset of \(\text{Irr}(B)\) of characters of height 0 by \(\text{Irr}_0(B)\).

Corollary 2.4. Let \(B\) be a \(p\)-block of a finite group \(G\) with non-abelian, metacyclic defect group of order \(p^3\). Then Conjecture D in [22] holds for \(B\).

Proof. Let \(D\) be a defect group of \(B\). For \(k \in \mathbb{N}\), let \(\mathbb{Q}_k\) be the cyclotomic field of degree \(k\). Let \(|G|_{p'}\) be the \(p'\)-part of the order of \(G\). It is well-known that the Galois group \(G := \text{Gal}(\mathbb{Q}_{|G|} \mid \mathbb{Q}_{|G|_{p'}})\) acts canonically on \(\text{Irr}(B)\). Let \(\gamma \in G\) be a \(p\)-element. Then it suffices to show that \(\gamma\) acts trivially on \(\text{Irr}_0(B)\). By Lemma IV.6.10 in [12] it is enough to prove that \(\gamma\) acts trivially on the \(F\)-conjugacy classes of subsections of \(B\) via \(\gamma(u, b_u) := (u^\tau, b_u)\) where \(u \in D\) and \(\tau \in \mathbb{Z}\). Since \(\gamma\) is a \(p\)-element, this action is certainly trivial unless \(|\langle u \rangle| = p^2\). Here however, the action of \(\gamma\) on \(\langle u \rangle\) is just the \(D\)-conjugation. The result follows.

In the situation of Corollary 2.4 one can say a bit more: By Proposition 3.3 in [38], \(\text{Irr}(B)\) splits into the following families of \(p\)-conjugate characters:

- \((p - 1)/e(B) + e(B)\) orbits of length \(p - 1\),
- two orbits of length \((p - 1)/e(B)\),
- at least \(e(B)\) \(p\)-rational characters.
Without loss of generality, let $e(B) > 1$. By Theorem 4.1 in [35] we have $k_1(B) \leq (p-1)/e(B) + e(B) - 1$. Moreover, Proposition 4.1 of the same paper implies $k_1(B) < p - 1$. In particular, all orbits of length $p-1$ of p-conjugate characters must lie in Irr$_0(B)$. In case $e(B) = p - 1$ the remaining $(p-1)/e(B) + e(B)$ characters in Irr$_0(B)$ must be p-rational. Now let $e(B) < \sqrt{p - 1}$. Then it is easy to see that Irr$_0(B)$ contains just one orbit of length $(p-1)/e(B)$ of p-conjugate characters. Unfortunately, it is not clear if this also holds for $e(B) \geq \sqrt{p - 1}$.

Next we improve the bound coming from Proposition 2.2 on the heights of characters.

Proposition 2.5. Let B be a p-block of a finite group with metacyclic, minimal non-abelian defect groups. Then $k_1(B) = k(B) - k_0(B)$. In particular, B satisfies the following conjectures:

- Eaton’s Conjecture [39]
- Eaton-Moretó Conjecture [10]
- Robinson’s Conjecture [23, Conjecture 4.14.7]
- Malle-Navarro Conjecture [29]

Proof. By Theorem 2 in [37] we may assume $p > 2$ as before. By way of contradiction suppose that $k_1(B) > 0$ for some $i \geq 2$. Since

$$k(B) \geq \left(\frac{p^{m-1} + p^{m-2} - p^{m-3} - 1}{e(B)} + e(B)\right)p^n,$$

we have $k(B) - k_0(B) \geq (p^{m-1} - p^{m-2})p^{n-1}/e(B)$ by Theorem 2.3. By Proposition 2.2 $k_1(B)$ and $k_i(B)$ are divisible by p^{n-1}. This shows

$$\left(\frac{p^{m-1} - 1}{e(B)} + e(B)\right)p^n + \left(\frac{p^{m-1} - p^{m-2}}{e(B)} - 1\right)p^{n+1} + p^{n+3} \leq \sum_{i=0}^{\infty} p^i k_i(B) \leq \left(\frac{p^{m-1} - 1}{e(B)} + e(B)\right)p^{n+1}.$$

Hence, we derive the following contradiction

$$p^{n+3} - p^{n+1} \leq \left(\frac{1 - p}{e(B)} + e(B)(p - 1)\right)p^n \leq p^{n+2}.$$

This shows $k_1(B) = k(B) - k_0(B)$. Now Eaton’s Conjecture is equivalent to Brauer’s $k(B)$-Conjecture and Olsson’s Conjecture. Both are known to hold for all metacyclic defect groups. Also the Eaton-Moretó Conjecture and Robinson’s Conjecture are trivially satisfied for B. The Malle-Navarro Conjecture asserts that $k(B)/k_0(B) \leq k(D) = p$ and $k(B)/l(B) \leq k(D)$, By Theorem 2.3 and Proposition 2.2, the first inequality reduces to $p^{n-1} + p^n - p^{n-2} \leq p^{n+1}$ which is true. For the second inequality we observe that every conjugacy class of D has at most p elements, since $|D : Z(D)| \equiv p^2$. Hence, $k(D) = |Z(D)| + \frac{|D| - |Z(D)|}{p} = p^{n+m-1} + p^{n+m-2} - p^{n+m-3}$.

Now Proposition 2.2 gives

$$\frac{k(B)}{l(B)} \leq k(B) \leq \left(\frac{p^{m-1} - 1}{e(B)} + e(B)\right)(p^{n-1} + p^n - p^{n-2}) \leq p^{n+m-1} + p^{n+m-2} - p^{n+m-3} = k(D).$$

We use the opportunity to present a result for $p = 3$ and a different class of metacyclic defect groups (where $l = 1$ with the notation above).

Theorem 2.6. Let B be a 3-block of a finite group G with defect group

$$D = \langle x, y \mid x^{3^m} = y^{3^n} = 1, \ yxy^{-1} = x^4 \rangle,$$

where $2 \leq m \leq n + 1$. Then $k_0(B) = 3^{n+1}$. In particular, the Alperin-McKay Conjecture holds for B.

Proof. We may assume that B is non-nilpotent. By Proposition 2.2 we have $k_0(B) \in \{2 \cdot 3^n, 3^{n+1}\}$. By way of contradiction, suppose that $k_0(B) = 2 \cdot 3^n$. Let $P \in Syl_p(G)$. Since $D/\ocs(B)$ acts freely on Irr$_0(B)$, there are 3^n characters of degree $a|P : D|$, and 3^m characters of degree $b|P : D|$ in B for some $a, b \geq 1$ such that $3 \mid a, b.$ Hence,

$$\sum_{\chi \in \text{Irr}(B)} \chi(1)^2 \mid = 3^n |P : D|^2 (a^2 + b^2) = |P : D|^2 |D : \ocs(B)|.$$
A generalization of the argument in the proof shows that in the situation of Proposition 2.2, $k_0(B) = 2p^n$ can only occur if $p \equiv 1 \pmod{4}$.

3 Lower defect groups

In the following we use the theory of lower defect groups in order to estimate $l(B)$. We cite a few results from the literature. Let B be a p-block of a finite group G with defect group D and Cartan matrix C. We denote the multiplicity of an integer a as elementary divisor of C by $m(a)$. Then $m(a) = 0$ unless a is a p-power. It is well-known that $m(|D|) = 1$. Brauer [3] expressed $m(p^n) (n \geq 0)$ in terms of 1-multiplicities of lower defect groups (see also Corollary V.10.12 in [12]):

$$m(p^n) = \sum_{R \in \mathcal{R}} m^{(1)}_B(R)$$

where \mathcal{R} is a set of representatives for the G-conjugacy classes of subgroups $R \leq D$ of order p^n. Later (3.1) was refined by Broué and Olsson by invoking the fusion system \mathcal{F} of B.

Proposition 3.1 (Broué-Olsson [5]). For $n \geq 0$ we have

$$m(p^n) = \sum_{R \in \mathcal{R}} m^{(1)}_B(R, b_R)$$

where \mathcal{R} is a set of representatives for the \mathcal{F}-conjugacy classes of subgroups $R \leq D$ of order p^n.

Proof. This is (2S) of [5].

In the present paper we do not need the precise (and complicated) definition of the non-negative numbers $m^{(1)}_B(R)$ and $m^{(1)}_B(R, b_R)$. We say that R is a lower defect group for B if $m^{(1)}_B(R, b_R) > 0$. In particular, $m^{(1)}_B(D, b_D) = m^{(1)}_B(D) = m(|D|) = 1$. A crucial property of lower defect groups is that their multiplicities can usually be determined locally. In the next lemma, $b^{N_G(R, b_R)}_R$ denotes the (unique) Brauer correspondent of b_R in $N_G(R, b_R)$.

Lemma 3.2. For $R \leq D$ and $B_R := b^{N_G(R, b_R)}_R$ we have $m^{(1)}_B(R, b_R) = m^{(1)}_B(R)$. If R is fully \mathcal{F}-normalized, then B_R has defect group $N_D(R)$ and fusion system $N_{\mathcal{F}}(R)$.

Proof. The first claim follows from (2Q) in [5]. For the second claim we refer to Theorem IV.3.19 in [2].

Another important reduction is given by the following lemma.

Lemma 3.3. For $R \leq D$ we have $\sum_{Q \in \mathcal{R}} m^{(1)}_B(Q) \leq l(b_R)$ where \mathcal{R} is a set of representatives for the $N_G(R, b_R)$-conjugacy classes of subgroups Q such that $R \leq Q \leq N_D(R)$.

Proof. This is implied by Theorem 5.11 in [32] and the remark following it. Notice that in Theorem 5.11 it should read $B \in \text{Bl}(G)$ instead of $B \in \text{Bl}(Q)$.

In the local situation for B_R also the next lemma is useful.

Lemma 3.4. If $O_p(Z(G)) \nsubseteq R$, then $m^{(1)}_B(R) = 0$.

Proof. See Corollary 3.7 in [32].

Now we apply these results.

Lemma 3.5. Let B be a p-block of a finite group with metacyclic, minimal non-abelian defect group D for an odd prime p. Then every lower defect group of B is D-conjugate either to $\langle y \rangle$, $\langle y^p \rangle$, or to D.

5
Proof. Let $R < D$ be a lower defect group of B. Then $m(|R|) > 0$ by Proposition 3.1 Corollary 5 in [32] shows that $p^{e - 1} | |R|$. Since F is controlled, the subgroup R is fully F-centralized and fully F-normalized. The fusion system of b_R on $C_D(R)$ is given by $C_F(R)$ (see Theorem IV.3.19 in [2]). Suppose for the moment that $C_F(R)$ is trivial. Then b_R is nilpotent and $l(b_R) = 1$. Let $B_R := b_R^{N_D(R,b_R)}$. Then B_R has defect group $N_D(R)$ and $m^{(1)}_{N_D}(N_D(R)) = 1$. Hence, Lemmas 5.2 and 5.3 imply $m^{(1)}_{B_R}(R,b_R) = m^{(1)}_{B_R}(R) = 0$. This contradiction shows that $C_F(R)$ is non-trivial. In particular R is centralized by a non-trivial p'-automorphism $\beta \in \Aut_D(R)$. By the Schur-Zassenhaus Theorem, β is $\Inn(D)$-conjugate to a power of α. Thus, R is D-conjugate to a subgroup of (y). The result follows.

Proposition 3.6. Let B be a p-block of a finite group with metacyclic, minimal non-abelian defect groups for an odd prime p. Then $e(B) \leq l(B) \leq 2e(B) - 1$.

Proof. Let

$$D = \langle x, y \mid xp^n = y^{p^n} = 1, xy^{p^n - 1} = x^{1 + p^{m - 1}} \rangle$$

be a defect group of B. We argue by induction on n. Let $n = 1$. By Proposition 2.2 we have $e(B) \leq l(B)$ and

$$k(B) \leq \left(\frac{p^{m - 1} - 1}{e(B)} + e(B) \right)(1 + p - p^{-1}).$$

Moreover, Theorem 3.2 in [32] gives

$$k(B) - l(B) = \frac{p^{m} + p^{m - 1} - p^{m - 2} - p}{e(B)} + e(B)(p - 1).$$

Hence,

$$l(B) = k(B) - (k(B) - l(B)) \leq \left(\frac{p^{m - 1} - 1}{e(B)} + e(B) \right)(1 + p - p^{-1}) - \frac{p^{m} + p^{m - 1} - p^{m - 2} - p}{e(B)} - e(B)(p - 1)$$

$$= 2e(B) - \frac{1}{p} \left(e(B) - \frac{1}{e(B)} \right) - 1/e(B),$$

and the claim follows in this case.

Now suppose $n \geq 2$. We determine the multiplicities of the lower defect groups by using Lemma 3.5. As usual $m(|D|) = 1$. Consider the subpair $(\langle y \rangle, b_y)$. By Lemmas 3.1 and 3.2 we have $m(p^n) = m^{(1)}_{b_y}(\langle y \rangle, b_y) = m^{(1)}_{b_y}(\langle y \rangle)$ where $B_y := b_y^{N_G(\langle y \rangle, b_y)}$. Since $N_D(\langle y \rangle) = C_D(y)$, it follows easily that $N_G(\langle y \rangle, b_y) = C_G(y)$ and $B_y = b_y$. By Theorem IV.3.19 in [2] the block b_y has defect group $C_D(y)$ and fusion system $C_F(y)$. In particular $e(b_y) = e(B)$. It is well-known that b_y dominates a block b_y of $C_D(y)/\langle y \rangle$ with cyclic defect group $C_D(y)/\langle y \rangle$ and $e(b_y) = e(b_y) = e(B)$ (see [30] Theorem 5.8.11). By Dade’s Theorem [6] on blocks with cyclic defect groups we obtain $l(b_y) = e(B)$. Moreover, the Cartan matrix of B_y has elementary divisors p^n and $|C_D(y)|$ where p^n occurs with multiplicity $e(B) - 1$. Since $\langle y \rangle \subseteq Z(C_G(y))$, Lemma 3.4 implies $m(p^n) = m^{(1)}_{b_y}(\langle y \rangle) = e(B) - 1$.

Now consider $(\langle u \rangle, b_u)$ where $u := y^p \in Z(D)$. Here b_u has defect group D. By the first part of the proof (the case $n = 1$) we obtain $l(b_u) = l(b_u) \leq 2e(B) - 1$. As above we have $m(p^{n - 1}) = m^{(1)}_{b_u}(\langle u \rangle, b_u) = m^{(1)}_{b_u}(\langle u \rangle)$. Since p^n occurs as elementary divisor of the Cartan matrix of b_u with multiplicity $e(B) - 1$ (see above), it follows that $m(p^{n - 1}) = m^{(1)}_{b_u}(\langle u \rangle) \leq e(B) - 1$. Now $l(B)$ is the sum over the multiplicities of elementary divisors of the Cartan matrix of B which is at most $m(|D|) + m(\langle y \rangle) + m(\langle u \rangle) \leq 1 + e(B) - 1 + e(B) - 1 = 2e(B) - 1$.

The next proposition gives a reduction method.

Proposition 3.7. Let $p > 2$, $m \geq 2$ and $e | p - 1$ be fixed. Suppose that $l(B) = e$ holds for every block B with defect group

$$D = \langle x, y \mid xp^n = y^{p^n} = 1, xy^{p^n - 1} = x^{1 + p^{m - 1}} \rangle$$
and \(e(B) = e \). Then every block \(B \) with \(e(B) = e \) and defect group
\[
D = \langle x, y \mid x^{p^m} = y^p = 1, \ yxy^{-1} = x^{1 + p^{m-1}} \rangle
\]
where \(n \geq 1 \) satisfies the following:

\[
k_0(B) = \left(\frac{p^{m-1} - 1}{e(B)} + e(B) \right) p^n, \quad k_1(B) = \frac{p^{m-1} - p^{m-2}}{e(B)} p^{n-1},
\]
\[
k(B) = \left(\frac{p^n + p^{m-1} - p^{m-2} - p}{e(B)} + e(B)p \right) p^{n-1}, \quad l(B) = e(B).
\]

Proof. We use induction on \(n \). In case \(n = 1 \) the result follows from Theorem 3.2 in [38], Theorem 2.3 and Proposition 2.5.

Now let \(n \geq 2 \). Let \(R \) be a set of representatives for the \(\mathcal{F} \)-conjugacy classes of elements of \(D \). We are going to use Theorem 5.9.4 in [30]. For \(1 \neq u \in R \), \(b_u \) has metacyclic defect group \(C_D(u) \) and fusion system \(C_{\mathcal{F}}(\langle u \rangle) \).

If \(C_{\mathcal{F}}(\langle u \rangle) \) is non-trivial, \(\alpha \in \text{Aut}_F(D) \) centralizes a \(D \)-conjugate of \(u \). Hence, we may assume that \(u \in (g) \) in this case. If \(\langle u \rangle = (g) \), then \(b_u \) dominates a block \(b_u \) of \(C_G(u) \) with cyclic defect group \(C_D(u)/\langle u \rangle \). Hence, \(l(b_u) = l(b_u) = e(B) \). Now suppose that \(\langle u \rangle < (g) \). Then by induction we obtain \(l(b_u) = l(b_u) = e(B) \). Finally assume that \(C_{\mathcal{F}}(\langle u \rangle) \) is trivial. Then \(b_u \) is nilpotent and \(l(b_u) = 1 \). It remains to determine \(R \). The powers of \(y \) are pairwise non-conjugate in \(F \). As in the proof of Proposition 2.5 \(D \) has precisely \(p^n + m - 1 \) conjugacy classes. Let \(C \) be one of these classes which do not intersect \(\langle y \rangle \). Assume \(\alpha^i(C) = C \) for some \(i \in \mathbb{Z} \) such that \(\alpha^i \neq 1 \). Then there are elements \(u \in C \) and \(w \in D \) such that \(\alpha^i(u) = wuw^{-1} \). Hence \(\gamma := w^{-1} \alpha^i \in N_G(D, b_p) \cap C_G(u) \). Since \(\gamma \) is not a \(p \)-element, we conclude that \(u \) is conjugate to a power of \(y \) which was excluded. This shows that no nontrivial power of \(\alpha \) can fix \(C \) as a set. Thus, all these conjugacy classes split in
\[
\frac{p^2 + p - p^{m-3} - 1}{e(B)} p^{n+m-3}
\]
orbits of length \(e(B) \) under the action of \(\text{Out}_F(D) \). Now Theorem 5.9.4 in [30] implies
\[
k(B) - l(B) = \left(\frac{p^{m-1} + p^{m-2} - p^{m-3} - 1}{e(B)} + e(B) \right) p^n - e(B).
\]
By Proposition 3.6 it follows that
\[
k(B) \leq \left(\frac{p^{m-1} + p^{m-2} - p}{e(B)} + e(B)p \right) p^{n-1} + e(B) - 1. \tag{3.2}
\]
By Proposition 2.2 the left hand side of (3.2) is divisible by \(p^{n-1} \). Since \(e(B) - 1 < p^{n-1} \), we obtain the exact value of \(k(B) \). It follows that \(l(B) = e(B) \). Finally, Theorem 2.3 and Proposition 2.5 give \(k_i(B) \).

For \(p = 3 \), Proposition 3.6 implies \(l(B) \leq 3 \). Here we are able to determine all block invariants.

Theorem 3.8. Let \(B \) be a non-nilpotent \(3 \)-block of a finite group with metacyclic, minimal non-abelian defect groups. Then
\[
k_0(B) = \frac{3^{m-2} + 1}{2} 3^{n+1}, \quad k_1(B) = 3^{m+n-3},
\]
\[
k(B) = \frac{11 \cdot 3^{m-2} + 9}{2} 3^{n-1}, \quad l(B) = e(B) = 2
\]
with the notation from (1.1).

Proof. By Proposition 3.7 it suffices to settle the case \(n = 1 \). Here the claim holds for \(m \leq 3 \) by Theorem 3.7 in [38]. We will extend the proof of this result in order to handle the remaining \(m \geq 4 \). Since \(B \) is non-nilpotent, we have \(e(B) = 2 \). By Theorem 2.3 we know \(k_0(B) = (3^m + 9)/2 \). By way of contradiction we may assume that \(l(B) = 3 \) and \(k_1(B) = 3^{m-2} + 1 \) (see Theorem 3.4 in [38]).
We consider the generalized decomposition numbers \(d^2 \chi_{\rho} \), where \(z := x^3 \in \mathbb{Z}(D) \) and \(\rho_z \) is the unique irreducible Brauer character of \(b_z \). Let \(d^2 := (d^2 \chi_{\rho} : \chi \in \text{Irr}(B)) \). By the orthogonality relations we have \((d^2, d^3) = 3^{m+1} \). As in [18] Section 4 we can write

\[
d^2 = \sum_{i=0}^{2 \cdot 3^{m-2} - 1} a_i \chi_{\rho}^i
\]

for integral vectors \(a_i \) and a primitive \(3^{m-1} \)-th root of unity \(\zeta_{3^m-1} \in \mathbb{C} \). Since \(z \) is \(F \)-conjugate to \(z^{-1} \), the vector \(d^2 \) is real. Hence, the vectors \(a_i \) are linearly dependent. More precisely, it turns out that the vectors \(a_i \) are spanned by \(\{ a_j : j \in J \} \) for a suitable ordering of \(J \). We remark that Alperin’s Weight Conjecture is also true for the abelian defect groups.

Let \(q \) be the quadratic form corresponding to the Dynkin diagram of type \(A_{3m-2} \). We set \(a(\chi) := (a_j(\chi) : j \in J) \) for \(\chi \in \text{Irr}(B) \). Since the subsection \((z, b_z) \) gives equality in Theorem 4.10 in [18], we have

\[
k_0(B) + 9k_1(B) = \sum_{\chi \in \text{Irr}(B)} q(a(\chi))
\]

for a suitable ordering of \(J \). This implies \(q(a(\chi)) = 3^{2h(\chi)} \) for \(\chi \in \text{Irr}(B) \) where \(h(\chi) \) is the height of \(\chi \). Moreover, if \(a_0(\chi) \neq 0 \), then \(a_0(\chi) = \pm 3^{h(\chi)} \) by Lemma 3.6 in [38]. By Lemma 4.7 in [18] we have \((a_0, a_0) = 27 \).

In the next step we determine the number \(\beta \) of \(3 \)-rational characters of of height 1. Since \((a_0, a_0) = 27 \), we have \(\beta < 4 \). On the other hand, the Galois group \(G \) of \(\mathbb{Q}(\zeta_{3^m-1}) \cap \mathbb{R} \) over \(\mathbb{Q} \) acts on \(d^2 \) and the length of every non-trivial orbit is divisible by 3 (because \(G \) is a 3-group). This implies \(\beta = 1 \), since \(k_1(B) = 3^{m-2} + 1 \).

In order to derive a contradiction, we repeat the argument with the subsection \((x, b_x)\). Again we get equality in Theorem 4.10, but this time for \(k_0(B) \) instead of \(k_0(B) + 9k_1(B) \). Hence, \(d^2(\chi) = 0 \) for characters \(\chi \in \text{Irr}(B) \) of height 1. Again we can write \(d^2 = \sum_{i=0}^{2 \cdot 3^{m-1} - 1} \pi_i \zeta_{3^m} \) where \(\pi_i \) are integral vectors. Lemma 4.7 in [18] implies \((\pi_0, \pi_0) = 9 \). Using Lemma 3.6 in [38] we also have \(\pi_0(\chi) \in \{0, \pm 1\} \). By Proposition 3.3 in [38] we have precisely three \(3 \)-rational characters \(\chi_1, \chi_2, \chi_3 \in \text{Irr}(B) \) of height 0 (note that altogether we have four \(3 \)-rational characters). Then \(a_0(\chi_i) = \pm \pi_0(\chi_i) = \pm 1 \) for \(i = 1, 2, 3 \). By [36] Section 1 we have \(\lambda \ast \chi_i \in \text{Irr}_0(B) \) and \((\lambda \ast \chi_i)(u) = \chi_i(u) \) for \(\lambda \in \text{Irr}(D/\text{pc}(B)) \equiv C_3 \) and \(u \in \{x, z\} \). Since this action on \(\text{Irr}(B) \) is free, we have three characters \(\psi \in \text{Irr}(B) \) such that \(a_0(\psi) = \pm \pi_0(\psi) = \pm 1 \). In particular \((a_0, \pi_0) \equiv 1 \) (mod 2). By the orthogonality relations we have \((d^2, d^r) = 0 \) for all \(j \in \mathbb{Z} \) such that \(3 \nmid j \). Using Galois theory we get the final contradiction \(0 = (d^2, \pi_0) = (a_0, \pi_0) \equiv 1 \) (mod 2).

In the smallest case \(D \cong C_9 \times C_3 \) of Theorem 3.3 even more information on \(B \) were given in Theorem 4.5 in [38].

Corollary 3.9. Alperin’s Weight Conjecture and the Ordinary Weight Conjecture are satisfied for every 3-block with metacyclic, minimal non-abelian defect groups.

Proof. Let \(D \) be a defect group of \(B \). Since \(B \) is controlled, Alperin’s Weight Conjecture asserts that \(l(B) = l(B_D) \) where \(B_D \) is a Brauer correspondent of \(B \) in \(N_G(D) \). Since both numbers equal \(e(B) \), the conjecture holds.

Now we prove the Ordinary Weight Conjecture in the form of [2] Conjecture IV.5.49. Since \(\text{Out}_F(D) \) is cyclic, all 2-cocycles appearing in this version are trivial. Therefore the conjecture asserts that \(k(B) \) only depends on \(F \) and thus on \(e(B) \). Since the conjecture is known to hold for the principal block of the solvable group \(G = D \rtimes C_e(B) \), the claim follows.

We remark that Alperin’s Weight Conjecture is also true for the abelian defect groups \(D \cong C_{3^n} \times C_{3^m} \) where \(n \neq m \) (see [11] [34]).

We observe another consequence for arbitrary defect groups.

Corollary 3.10. Let \(B \) be a 3-block of a finite group with defect group \(D \). Suppose that \(D/\langle z \rangle \) is metacyclic, minimal non-abelian for some \(z \in \mathbb{Z}(D) \). Then Brauer’s \(k(B) \)-Conjecture holds for \(B \), i.e. \(k(B) \leq |D| \).
Proof. Let \((z, b_z)\) be a major subsection of \(B\). Then \(b_z\) dominates a block \(\overline{b_z}\) of \(C_G(z)/\langle z \rangle\) with metacyclic, minimal non-abelian defect group \(D/\langle z \rangle\). Hence, Theorem 3.10 implies \(l(b_z) = l(\overline{b_z}) \leq 2\). Now the claim follows from Theorem 2.1 in \[38\].

In the situation of Theorem 3.8 it is straight-forward to distribute \(\text{Irr}(B)\) into families of \(3\)-conjugate and \(3\)-rational characters (cf. Proposition 3.3 in \[38\]). However, it is not so easy to see which of these families lie in \(\text{Irr}_0(B)\).

Now we turn to \(p = 5\).

Theorem 3.11. Let \(B\) be a \(5\)-block of a finite group with non-abelian defect group \(C_{25} \rtimes C_{5^n}\) where \(n \geq 1\). Then

\[
\begin{align*}
k_0(B) &= \left(\frac{4}{e(B)} + e(B)\right)5^n, \\
k_1(B) &= \frac{4}{e(B)}5^{n-1}, \\
l(B) &= e(B).
\end{align*}
\]

Proof. By Proposition 3.7 it suffices to settle the case \(n = 1\). Moreover by Theorem 4.4 in \[38\] we may assume that \(e(B) = 4\). Then by Theorem 2.3 above and Proposition 4.2 in \[38\] we have \(k_0(B) = 25\), \(1 \leq k_1(B) \leq 3, 26 \leq k(B) \leq 28\) and \(4 \leq l(B) \leq 6\). We consider the generalized decomposition numbers \(d_{\psi^n,z}^{x}\), where \(z := x^5 \in \mathbb{Z}(D)\) and \(\psi_z\) is the unique irreducible Brauer character of \(b_z\). Since all non-trivial powers of \(z\) are \(F\)-conjugate, the numbers \(d_{\psi^n,z}^{x}\) are integral. Also, these numbers are non-zero, because \((z, b_z)\) is a major subsection. Moreover, \(d_{\psi^n,z}^{x} \equiv 0 \text{ (mod } p)\) for characters \(\chi \in \text{Irr}(B)\) of height 1 (see Theorem V.9.4 in \[12\]). Let \(d^2 := (d_{\psi^n,z}^{x} : \chi \in \text{Irr}(B))\). By the orthogonality relations we have \((d^2, d^2) = 125\). Suppose by way of contradiction that \(k_1(B) > 1\). Then it is easy to see that \(d_{\psi^n,z}^{x} \equiv \pm 5\) for characters \(\chi \in \text{Irr}(B)\) of height 1. By \[38\] Section 1, the numbers \(d_{\psi^n,z}^{x}\) \((\chi \in \text{Irr}(B))\) split in five orbits of length 5 each. Let \(\alpha\) (respectively \(\beta, \gamma\)) be the number of orbits of entries \(\pm 1\) (respectively \(\pm 2, \pm 3\)) in \(d^2\). Then the orthogonality relations reads

\[
\alpha + 4\beta + 9\gamma + 5k_1(B) = 25.
\]

Since \(\alpha + \beta + \gamma = 5\), we obtain

\[
3\beta + 8\gamma = 20 - 5k_1(B) \in \{5, 10\}.
\]

However, this equation cannot hold for any choice of \(\alpha, \beta, \gamma\). Therefore we have proved that \(k_1(B) = 1\). Now Theorem 4.1 in \[38\] implies \(l(B) = 4\).

Corollary 3.12. Alperin’s Weight Conjecture and the Ordinary Weight Conjecture are satisfied for every \(5\)-block with non-abelian defect group \(C_{25} \rtimes C_{5^n}\).

Proof. See Corollary 3.9.

Unfortunately, the proof of Theorem 3.11 does not work for \(p = 7\) and \(e(B) = 6\) (even by invoking the other generalized decomposition numbers). However, we have the following partial result.

Proposition 3.13. Let \(p \in \{7, 11, 13, 17, 23, 29\}\) and let \(B\) be a \(p\)-block of a finite group with defect group \(C_{p^2} \rtimes C_{p^n}\) where \(n \geq 1\). If \(e(B) = 2\), then

\[
\begin{align*}
k_0(B) &= \frac{p + 3}{2}p^n, \\
k_1(B) &= \frac{p - 1}{2}2p^{n-1}, \\
l(B) &= 2.
\end{align*}
\]

Proof. We follow the proof of Theorem 4.4 in \[38\] in order to handle the case \(n = 1\). After that the result follows from Proposition 3.7.
In fact the first part of the proof of Theorem 4.4 in [38] applies to any prime $p \geq 7$. Hence, we know that the generalized decomposition numbers $a_{\chi, z} = a_0(\chi)$ for $z := x^p$ and $\chi \in \text{Irr}_0(B)$ are integral. Moreover,

$$\sum_{\chi \in \text{Irr}_0(B)} a_0(\chi)^2 = p^2.$$

The action of $D/\text{foc}(B)$ on $\text{Irr}_0(B)$ shows that the values $a(\chi)$ distribute in $(p+3)/2$ parts of p equal numbers each. Therefore, Eq. (4.1) in [38] becomes

$$\sum_{i=2}^{\infty} r_i(i^2 - 1) = \frac{p - 3}{2}$$

for some $r_i \geq 0$. This gives a contradiction.

\[\square\]

Acknowledgment

This work is supported by the Carl Zeiss Foundation and the Daimler and Benz Foundation.

References

Benjamin Sambale
Institut für Mathematik
Friedrich-Schiller-Universität
07743 Jena
Germany
benjamin.sambale@uni-jena.de