CENTRAL IDEALS AND CARTAN INVARIANTS
OF SYMMETRIC ALGEBRAS

László Héthelyi
Department of Algebra
Budapest University of Technology and Economics
H-1521 Budapest
Műegyetem Rkp. 3-9
Hungary
hethelyi@math.bme.hu

and

Erzsébet Horváth
Department of Algebra
Budapest University of Technology and Economics
H-1521 Budapest
Műegyetem Rkp. 3-9
Hungary
he@math.bme.hu

and

Burkhard Külshammer
Mathematisches Institut
Friedrich-Schiller-Universität
07740 Jena
Germany
kuelshammer@uni-jena.de

and

John Murray
Mathematics Department
National University of Ireland
Maynooth, C. Kildare
Ireland
John.Murray@maths.may.ie

Abstract. In this paper, we investigate certain ideals in the center of a symmetric algebra A over an algebraically closed field of characteristic $p > 0$. These ideals include the Higman ideal and the Reynolds ideal. They are closely related to the p-power map on A. We generalize some results concerning these ideals from group algebras to symmetric algebras, and we obtain some new results as well. In case $p = 2$, these ideals detect odd diagonal entries in the Cartan matrix of A. In a sequel to this paper, we will apply our results to group algebras.

Subject Classification: 16L60, 16S34, 20C05.

1. Introduction

Let A be a symmetric algebra over an algebraically closed field F of characteristic $p > 0$, with symmetrizing bilinear form $(\cdot | \cdot)$. In this paper we investigate the following chain of ideals of the center ZA of A:

$$ZA \supseteq T_1A^\perp \supseteq T_2A^\perp \supseteq \ldots \supseteq RA \supseteq HA \supseteq Z_0A \supseteq 0;$$
here $Z_0A := \sum_B ZB$ where B ranges over the set of blocks of A which are simple F-algebras. Thus Z_0A is a direct product of copies of F, one for each simple block B of A. Furthermore, HA denotes the Higman ideal of A, defined as the image of the trace map

$$\tau : A \longrightarrow A, \quad x \mapsto \sum_{i=1}^n b_i x a_i;$$

here a_1, \ldots, a_n and b_1, \ldots, b_n are a pair of dual bases of A. Moreover, RA is the Reynolds ideal of A, defined as the intersection of the socle SA of A and the center ZA of A. The ideals T_nA^\perp ($n \in \mathbb{N}$) were introduced in [6 IV]; they can be viewed as generalizations of the Reynolds ideal. In fact, RA is their intersection. These ideals are defined in terms of the p-power $A \longrightarrow A, x \mapsto x^p$, and the bilinear form $(, |)$. The precise definition will be given below. Motivated by the special case of group algebras [8,9], we show that

$$Z_0A \subseteq (T_1A^\perp)^2 \subseteq HA,$$

so that $(T_1A^\perp)^2$ fits nicely into the chain of ideals above. When p is odd then

$$(T_1A^\perp)^2 = Z_0A.$$

The case $p = 2$ behaves differently and turns out to have some interesting special features. We show that, in this case,

$$(T_1A^\perp)^3 = (T_1A^\perp)(T_2A^\perp) = Z_0A,$$

but that $(T_1A^\perp)^2 \neq Z_0A$ in general. We prove that, in case $p = 2$, the mysterious ideal $(T_1A^\perp)^2$ is a principal ideal of ZA. It is generated by the element $\zeta_1(1)^2$ where $\zeta_1 : ZA \longrightarrow ZA$ is a certain natural semilinear map related to the p-power map. The map ζ_1 was first defined in [6 IV].

Moreover, in case $p = 2$, the dimension of $(T_1A^\perp)^2$ is the number of blocks B of A with the property that the Cartan matrix $C_B = (c_{ij})$ of B contains an odd diagonal entry c_{ii}. A primitive idempotent e in A satisfies $e\zeta_1(1)^2 \neq 0$ if and only if the dimension of eAe is odd.

At the end of the paper, we investigate the behaviour of the ideals T_nA^\perp under Morita and derived equivalences, and we dualize some of the results obtained in the previous sections. In a sequel [2] to this paper, we will apply our results to group algebras of finite groups. We will see that a finite group G contains a real conjugacy class of 2-defect zero if and only if the Cartan matrix of G in characteristic 2 contains an odd diagonal entry. We will also prove a number of related facts.

2. The Reynolds ideal and its generalizations

In the following, let F be an algebraically closed field of characteristic $p > 0$, and let A be a symmetric F-algebra with symmetrizing bilinear form $(, |)$. Thus A is a finite-dimensional associative unitary F-algebra, and $(, |)$ is a non-degenerate symmetric bilinear form on A which is associative, in the sense that $(ab|c) = (a|bc)$ for $a, b, c \in A$. We denote the center of A by ZA, the Jacobson radical of A by JA, the socle of A by SA and the commutator subspace of A by KA. Thus KA is the F-subspace of A spanned by all commutators $ab - ba$ ($a, b \in A$). For $n \in \mathbb{N}$,

$$T_nA := \{x \in A : x^{p^n} \in KA\}$$

is a ZA-submodule of A, so that

$$KA = T_0A \subseteq T_1A \subseteq T_2A \subseteq \ldots$$

and

$$\sum_{n=0}^\infty T_nA = JA + KA$$

2
(cf. [7]). For any F-subspace X of A, we set

$$X^\perp := \{y \in A : (x|y) = 0 \text{ for } x \in X\}.$$

Then

$$ZA = KA^\perp = T_0A^\perp \supseteq T_1A^\perp \supseteq T_2A^\perp \supseteq \ldots$$

is a chain of ideals of ZA such that

$$\bigcap_{n=0}^\infty T_nA^\perp = SA \cap ZA.$$

We call $RA := SA \cap ZA$ the Reynolds ideal of ZA, in analogy to the terminology used for group algebras. For $n \in \mathbb{N}$ and $z \in ZA$, there is a unique element $\zeta_n(z) \in ZA$ such that

$$(\zeta_n(z)|x)^p_n = (z|x^p_n) \text{ for } x \in A.$$

This defines a map $\zeta_n = \zeta_n^A : ZA \rightarrow ZA$ with the following properties:

Lemma 2.1. Let $m, n \in \mathbb{N}$, and let $y, z \in ZA$. Then the following holds:

(i) $\zeta_n(y + z) = \zeta_n(y) + \zeta_n(z)$ and $\zeta_n(yz) = \zeta_n(y)p_n(z).$

(ii) $\zeta_n \circ \zeta_m = \zeta_{m+n}$.

(iii) $\text{Im}(\zeta_n) = T_nA^\perp$.

(iv) $\zeta_n^A(z)e = \zeta_n^A(ze)$ for every idempotent e in A.

Proof. (i), (ii) and (iii) are proved in [7, (44)-(47)].

(iv) Recall that eAe is a symmetric F-algebra; a corresponding symmetric bilinear form is obtained by restricting $(\cdot | \cdot)$ to eAe. Note that $ez = eze \in eZAe \subseteq Z(eAe)$ and that, similarly, $\zeta_n^A(z)e \in Z(eAe)$. Moreover, for $x \in eAe$, we have

$$(\zeta_n^A(z)e|x)^p_n = (\zeta_n^A(z)|ex)^p_n = (\zeta_n^A(z)|x)^p_n = (z|x^p_n)$$

and the result follows.

We apply these properties in order to prove:

Lemma 2.2. Let $m, n \in \mathbb{N}$. Then

$$(T_mA^\perp)(T_nA^\perp) \subseteq \zeta_{m+n}((T_nA^\perp)^p_n(p^m-1)) \subseteq T_{m+n}A^\perp.$$

Proof. Let $y, z \in ZA$. Then Lemma 2.1 implies that

$$\zeta_m(y)\zeta_n(z) = \zeta_m(y\zeta_n(z)^p_n) = \zeta_m(\zeta_m(y)p_n(z)\zeta_n(z)^p_n-1)) = \zeta_m(y)p_n(z\zeta_n(z)^p_n(p^m-1))) \in \zeta_{m+n}((T_nA^\perp)^p_n(p^m-1)).$$

Thus the result follows from Lemma 2.1 (iii).

Let B_1, \ldots, B_r denote the blocks of A, so that $A = B_1 \oplus \cdots \oplus B_r$. Each B_i is itself a symmetric F-algebra. If a block B_i is a simple F-algebra then $B_i \cong \text{Mat}(d_i, F)$ for a positive integer d_i, and thus $ZA \cong F$. We set

$$Zd_iA := \sum_i ZB_i.$$

3
where the sum ranges over all \(i \in \{1, \ldots, r \} \) such that \(B_i \) is a simple \(F \)-algebra. Then \(Z_0A \) is an ideal of \(ZA \) and an \(F \)-algebra which is isomorphic to a direct sum of copies of \(F \). Its dimension is the number of simple blocks of \(A \). We exploit Lemma 2.2 in order to prove:

Theorem 2.3. (i) \((T_1A^\perp)^2 \subseteq RA\).
(ii) \((T_1A^+)(T_2A^+) = (T_1A^\perp)^3 = Z_0A\).
(iii) If \(p \) is odd then \((T_1A^\perp)^2 = Z_0A\).

Proof. (i) Lemma 2.2 implies

\[(T_1A^\perp)^2 \subseteq \zeta_2((T_1A^\perp)^p_{(p-1)}) \subseteq \zeta_2((T_1A^\perp)^2). \]

Iteration yields

\[(T_1A^\perp)^2 \subseteq \zeta_2(\zeta_2((T_1A^\perp)^2)) = \zeta_4((T_1A^\perp)^2) \subseteq \zeta_6((T_1A^\perp)^2) \subseteq \ldots. \]

Thus

\[(T_1A^\perp)^2 \subseteq \bigcap_{n=0}^{\infty} \text{Im}(\zeta_{2n}) = \bigcap_{n=0}^{\infty} T_{2n}A^\perp = SA \cap ZA = RA, \]

by Lemma 2.1 (iii).

(ii) It is easy to see that \(T_nA = T_nB_1 \oplus \cdots \oplus T_nB_r \) and \(T_nA^\perp = T_nB_1^\perp \oplus \cdots \oplus T_nB_r^\perp \) for \(n \in \mathbb{N} \) where \(T_nB_i^\perp = \{ x \in B_i : \langle x, T_nB_i \rangle = 0 \} \) for \(i = 1, \ldots, r \). So we may assume that \(A \) itself is a block.

If \(A \) is simple then \(JA = 0 \), so \(T_nA = KA \) and \(T_nA^\perp = ZA \) for all \(n \in \mathbb{N} \). Hence

\[ZA = (T_1A^\perp)(T_2A^\perp) = (T_1A^\perp)^3 \]

in this case.

Now suppose that \(A \) is non-simple. Then \(JA \neq 0 \). So \(ZA \neq RA \). It follows that \(JA + KA \neq KA \), whence \(JA \) is not contained in \(KA \). So \(T_1A \neq KA \). This means that \(T_1A^\perp \) is a proper ideal of \(ZA \). Since \(ZA \) is a local \(F \)-algebra this implies that \(T_1A^\perp \subseteq JA \subseteq ZA \). Thus we may conclude, using (i), that \((T_1A^\perp)^3 \subseteq (RA)(JA) = 0\). Hence Lemma 2.2 yields

\[(T_1A^\perp)(T_2A^\perp) \subseteq \zeta_3((T_2A^\perp)^p_{(p-1)}) \subseteq \zeta_3((T_1A^\perp)^3) = \zeta_3(0) = 0. \]

(iii) Suppose that \(p \) is odd. As in the proof of (ii), we may assume that \(A \) is a block, and that \(A \) is non-simple. Then Lemma 2.2 and (ii) imply that

\[(T_1A^\perp)^2 \subseteq \zeta_2((T_1A^\perp)^p_{(p-1)}) \subseteq \zeta_2((T_1A^\perp)^3) = \zeta_2(0) = 0, \]

and the result is proved.

Theorem 2.3 extends [9, Theorem 9] from group algebras to symmetric algebras. We will later improve on part (i). But we first note the following consequence.

Corollary 2.4. Suppose that \(A \) is a block, and denote the central character of \(A \) by \(\omega : ZA \to F \). Moreover, let \(m, n \in \mathbb{N} \) with \(m \neq 0 \neq n \), and let \(x, y \in ZA \). Then

\[\zeta_m(x)\zeta_n(y) = \omega(x)^{p^{-m}}\omega(y)^{p^{-n}}\zeta_m(1)\zeta_n(1). \]

In particular, we have

\[(T_mA^\perp)(T_nA^\perp) = F\zeta_m(1)\zeta_n(1), \]

so that \(\text{dim}(T_mA^\perp)(T_nA^\perp) \leq 1 \).

Proof. Theorem 2.3 (i) implies that \(\zeta_m(x)^p \in RA \subseteq SA \). Thus

\[\zeta_m(x)^p = \omega(y)\zeta_m(x)^p. \]
Similarly, we have \(xζ_n(1)p^m = ω(x)ζ_n(1)p^m \). So we conclude that
\[
ζ_m(x)ζ_n(y) = ζ_n(ζ_m(x)p^n y) = ζ_n(ω(y)ζ_m(x)p^n) = ω(y)p^m ζ_m(x)ζ_n(1)
\]
\[
= ω(y)p^m ζ_m(xζ_n(1)p^n) = ω(y)p^m ζ_n(ω(x)ζ_n(1)p^m) = ω(y)p^m ω(x)p^m ζ_m(1)ζ_n(1).
\]
The remaining assertions follow from Lemma 2.1 (iii).

We can generalize part of Corollary 2.4 in the following way.

Proposition 2.5. Let \(m, n \in \mathbb{N} \) with \(m \neq 0 \neq n \). Then
\[
(T_m A^⊥)(T_n A^⊥) = \mathbb{Z}A : ζ_m(1)ζ_n(1)
\]
is a principal ideal of \(\mathbb{Z}A \). If \(p \) is odd, or if \(m + n > 2 \), then the dimension of \((T_m A^⊥)(T_n A^⊥) \) equals the number of simple blocks of \(A \) and in particular does not depend on \(m + n \).

Proof. It is easy to see that we may assume that \(A \) is a block. In this case the assertion follows from Corollary 2.4 and Theorem 2.3.

In the next two sections, we will handle the remaining case \(p = 2 \) and \(m = n = 1 \). Here we just illustrate this exceptional case by an example.

Let \(G \) be a finite group. Then the group algebra \(FG \) is a symmetric \(F \)-algebra; a symmetrizing bilinear form on \(FG \) satisfies
\[
(g|h) = \begin{cases} 1, & \text{if } gh = 1, \\ 0, & \text{otherwise}, \end{cases}
\]
for \(g, h \in G \). An element \(g \in G \) is called real if \(g \) is conjugate to its inverse \(g^{-1} \), and \(g \) is said to be of \(p \)-defect zero if \(|C_G(g)| \) is not divisible by \(p \). We denote the set of all real elements of \(2 \)-defect zero in \(G \) by \(R_G \). For a subset \(X \) of \(G \), we set
\[
X^+ := \sum_{x \in X} x \in FG.
\]
It was proved in [8, Proposition 4.1] that \(R_G^⊥ = ζ_1(1)^2 \in (T_1 FG^⊥)^2 \), in case \(p = 2 \).

Example 2.6. Let \(p = 2 \), and suppose that \(G \) is the symmetric group \(S_4 \) of degree 4. Then \(FG \) has no simple blocks; in fact, \(FG \) has just one block, the principal one. Thus \(\mathbb{Z}_0 FG = 0 \). On the other hand, \(R_G \) is precisely the set of all 3-cycles in \(S_4 \). Thus \(0 \neq R_G^⊥ \in (T_1 FG^⊥)^2 \). (In fact, \((T_1 FG^⊥)^2 \) is one-dimensional, by Corollary 2.4.) This example shows that \((T_1 A^⊥)^2 \neq \mathbb{Z}_0 A \), in general.

3. Odd Cartan invariants

Let \(F \) be an algebraically closed field of characteristic \(p = 2 \), and let \(A \) be a symmetric \(F \)-algebra with symmetrizing bilinear form \((., .) \). In this section, we will prove some remarkable properties of the ideal \((T_1 A^⊥)^2 \) of \(\mathbb{Z}A \). We start by recalling some known facts concerning symmetric bilinear forms over \(F \).

Lemma 3.1. Let \(V \) be a finite-dimensional vector space over \(F \), and let \((., .) \) be a non-degenerate symmetric bilinear form on \(V \). Then either \((., .) \) is symplectic (i.e. \(\langle v|v \rangle = 0 \) for every \(v \in V \)), or there exists an orthonormal basis \(v_1, \ldots, v_n \) of \(V \) (i.e. \(\langle v_i|v_j \rangle = δ_{ij} \) for \(i, j = 1, \ldots, n \)).

Proof. This can be found in [4, Hauptsatz V.3.5], for example.

If \((., .) \) is symplectic then there exists a symplectic basis \(v_1, \ldots, v_m, v_{m+1}, \ldots, v_{2m} \) of \(V \), i.e.
\[
\langle v_i|v_{m+i} \rangle = \langle v_{m+i}|v_i \rangle = 1 \quad \text{for } i = 1, \ldots, m,
\]
\[
\langle v_i|v_j \rangle = 0 \quad \text{otherwise},
\]
Lemma 3.2.

\[(\zeta_1(1)|\zeta_1(1)) = (\dim A) \cdot 1_F.\]

Proof. By Lemma 3.1, there exists an F-basis

\[a_1, \ldots, a_m, a_{m+1}, \ldots, a_{2m}, a_{2m+1}, \ldots, a_n\]

of A such that

\[(a_i|a_{m+i}) = (a_{m+i}|a_i) = 1 \quad \text{for} \quad i = 1, \ldots, m,
(a_i|a_i) = 1 \quad \text{for} \quad i = 2m + 1, \ldots, n,
(a_i|a_j) = 0 \quad \text{otherwise},\]

(and either $n = 2m$ or $m = 0$). Then the dual basis b_1, \ldots, b_n of a_1, \ldots, a_n is given by

\[a_{m+1}, \ldots, a_{2m}, a_1, \ldots, a_m, a_{2m+1}, \ldots, a_n.\]

Thus \((\zeta_1(1)|a_i)^2 = (1|a_i^2) = (a_i|a_i) = (a_i|a_i)^2\) for $i = 1, \ldots, n$, so

\[\zeta_1(1) = \sum_{i=1}^n (\zeta_1(1)|a_i)b_i = \sum_{i=1}^n (a_i|a_i)b_i = \sum_{i=2m+1}^n a_i\]

and

\[(\zeta_1(1)|\zeta_1(1)) = \sum_{i,j=2m+1}^n (a_i|a_j) = \sum_{i=2m+1}^n (a_i|a_i) = (n - 2m) \cdot 1_F = n \cdot 1_F = (\dim A) \cdot 1_F,\]

and the result is proved.

The next statement holds in arbitrary characteristic. It is essentially taken from [11, Corollary (1.1)].

Lemma 3.3. Let e be a primitive idempotent in A, and let $r \in RA$. Then $er = 0$ if and only if $(e|r) = 0$.

Proof. If $er = 0$ then $0 = (er|1) = (e|r)$. Conversely, if $(e|r) = 0$ then

\[\langle eAer | e r \rangle = (eAe|r) = (Fe + J(eAe)|r) \subseteq F(e|r) + (JA \cdot r|1) = 0.\]

Thus $0 = ere = er$ since the restriction of $(\cdot | \cdot)$ to eAe is non-degenerate.

Now we choose representatives $a_1 = e_1, \ldots, a_l = e_l$ for the conjugacy classes of primitive idempotents in A. (This means that e_1, \ldots, e_l are representatives for the isomorphism classes of indecomposable projective left A-modules.) Moreover, we let a_{l+1}, \ldots, a_n denote an F-basis of $JA + KA$. Then a_1, \ldots, a_n form an F-basis of A.

Let b_1, \ldots, b_n denote the dual basis of a_1, \ldots, a_n. Then $r_1 := b_1, \ldots, r_l := b_l$ are contained in $(JA + KA)^{\perp} = SA \cap ZA = RA$, so they form an F-basis of RA. Moreover, Lemma 3.3 implies that $e_i r_j = 0$ for $i \neq j$ and $e_i r_i \neq 0$ for $i = 1, \ldots, l$.

Lemma 3.4. With e_1, \ldots, e_l as above, we have $\zeta_1(1)^2 = \sum_{i=1}^l (\dim e_i Ae_i) \cdot r_i$ and $e_i \zeta_1(1)^2 = (\dim e_i Ae_i) \cdot e_i r_i$ for $i = 1, \ldots, l$.

6
Proof. Lemma 2.1 (iii) and Theorem 2.3 (i) imply that $\zeta_1(1)^2 \in (T_1 A^\perp)^2 \subseteq RA$. By making use of Lemma 2.1 (iv) and Lemma 3.2, we obtain

$$\zeta_1(1)^2 = \sum_{i=1}^{l} (\zeta_1(1)^2 e_i) r_i = \sum_{i=1}^{l} (\zeta_1(1)e_i \zeta_1(1)e_i) r_i = \sum_{i=1}^{l} (\dim e_i Ae_i) \cdot r_i.$$

Since $e_i r_j = 0$ for $i \neq j$ the result follows.

The next theorem is the main result of this section.

Theorem 3.5. For A a symmetric algebra over an algebraically closed field F of characteristic 2 and for e a primitive idempotent in A, the following assertions are equivalent:

1. $\dim e Ae$ is even.
2. $e \zeta_1(1)^2 = 0$.
3. $(e|\zeta_1(1)^2) = 0$.

Proof. We may assume that $e = e_i$ for some $i \in \{1, \ldots, l\}$. Then $e_i \zeta_1(1)^2 = (\dim e_i Ae_i) \cdot e_i r_i$ with $e_i r_i \neq 0$, by Lemma 3.4. This shows that (1) and (2) are equivalent. Since $\zeta_1(1)^2 \in RA$, Lemma 3.3 implies that (2) and (3) are equivalent.

The Cartan matrix $C := (c_{ij})_{i,j=1}^{l}$ of A is defined by

$$c_{ij} := \dim e_i Ae_j \quad \text{for} \quad i, j = 1, \ldots, l.$$

Thus C is a symmetric matrix with non-negative integer coefficients, the Cartan invariants of A. Hence Theorem 3.5 has the following consequence.

Corollary 3.6. With the notation for the Cartan matrix of A as above, $\zeta_1(1)^2 \neq 0$ if and only if c_{ii} is odd for some i. More precisely, for a block B of A, we have $\zeta_1(1)^2 1_B \neq 0$ if and only if the Cartan matrix of B contains an odd diagonal entry.

In order to illustrate Corollary 3.6 recall that, by Example 2.6, the group algebra FG, for $G = S_4$, satisfies $\zeta_1(1)^2 = R_G^2 \neq 0$. Thus the Cartan matrix of FG contains an odd diagonal entry, by Corollary 3.6. Indeed, the Cartan matrix of FG is

$$C := \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix},$$

as is well-known. More substantial examples will be presented in [2].

It may be of interest to note that the existence of odd diagonal Cartan invariants in characteristic 2 is invariant under derived equivalences (cf. [5]).

Proposition 3.7. Let A' be a symmetric F-algebra which is derived equivalent to A. Then the Cartan matrix of A' contains an odd diagonal entry if and only if the Cartan matrix of A does.

Proof. It is known that the Cartan matrices $C := (c_{ij})_{i,j=1}^{l}$ of A and $C' := (c'_{ij})_{i,j=1}^{l}$ of A' have the same format, and that they are related by an equation

$$C' = Q \cdot C \cdot Q^\top,$$

where $Q := (q_{ij})_{i,j=1}^{l}$ is an integral matrix with determinant ± 1 (cf. [5]). Thus

$$c'_{ii} = \sum_{j,k=1}^{l} q_{ij} q_{ik} c_{jk} \equiv \sum_{j=1}^{l} q_{ij}^2 c_{jj} \pmod{2}.$$
for \(i = 1, \ldots, l \). If \(c_i \) is odd then \(c_j \) has to be odd for some \(j \in \{1, \ldots, l\} \) (and conversely).

4. The Higman ideal

Let \(F \) be an algebraically closed field, and let \(A \) be a symmetric \(F \)-algebra with symmetrizing bilinear form \((|.|)\). Moreover, let \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \) denote a pair of dual bases of \(A \). In the following, the \(F \)-linear map

\[
\tau : A \longrightarrow A, \quad x \longmapsto \sum_{i=1}^{n} b_i x a_i,
\]

will be of interest (cf. [3, §66]). We record the following properties of this \textit{trace map} \(\tau \):

\begin{lemma}
\text{(i)} \(\tau \) is independent of the choice of dual bases.
\text{(ii)} \(\tau \) is self-adjoint with respect to \((.|.|)\).
\text{(iii)} \(\text{Im}(\tau) \subseteq SA \cap ZA = RA \) and \(JA + KA \subseteq \text{Ker}(\tau) \).
\end{lemma}

\textbf{Proof.} (i) Let \(a_1', \ldots, a_n' \) and \(b_1', \ldots, b_n' \) be another pair of dual bases of \(A \). Then \(b_i' = \sum_{j=1}^{n} (a_i|b_j')b_j \) and \(a_i = \sum_{j=1}^{n} (a_i|b_j')a_j' \) for \(i = 1, \ldots, n \). Thus

\[
\sum_{i=1}^{n} b_i' x a_i' = \sum_{i,j=1}^{n} (a_i|b_j')b_j x a_i' = \sum_{j=1}^{n} b_j x \sum_{i=1}^{n} (a_i|b_j')a_i' = \sum_{j=1}^{n} b_j x a_j
\]

for \(x \in A \).

(ii) Let \(x, y \in A \). Then, by (i), we get

\[
(\tau(x)|y) = \sum_{i=1}^{n} (b_i x a_i|y) = \sum_{i=1}^{n} (x|a_i y b_i) = (x|\tau(y)).
\]

(iii) Let \(x, y \in A \). Then

\[
\tau(x) y = \sum_{i=1}^{n} b_i x a_i y = \sum_{i,j=1}^{n} b_i x (a_i y b_j) a_j = \sum_{i,j=1}^{n} (a_i y b_j) b_i x a_j = \sum_{j=1}^{n} y b_j x a_j = y \tau(x).
\]

Hence \(\text{Im}(\tau) \subseteq ZA \). In order to prove \(\text{Im}(\tau) \subseteq SA \), we choose \(a_1, \ldots, a_n \) appropriately. Indeed, we may assume that \(a_1 + JA, \ldots, a_r + JA \) form an \(F \)-basis of \(A/JA \), that \(a_{r+1} + (JA)^2, \ldots, a_s + (JA)^2 \) form an \(F \)-basis of \((JA)/(JA)^2 \), that \(a_{s+1} + (JA)^3, \ldots, a_t + (JA)^3 \) form an \(F \)-basis of \((JA)^2/(JA)^3 \), etc. Then \(b_1, \ldots, b_r \) are contained in \((JA)^{1} \), \(b_1, \ldots, b_t \) are contained in \((JA)^{1} \), etc.

Now let \(x \in A \) and \(y \in JA \). Then \(b_i x a_i y \in (JA)^{1} \cdot A \cdot (JA) = 0 \) for \(i = 1, \ldots, r \), \(b_i x a_i y \in ((JA)^{1})^{2} \cdot A \cdot (JA) \cdot (JA) = 0 \) for \(i = r+1, \ldots, s \), \(b_i x a_i y \in ((JA)^{1})^{2} \cdot A \cdot (JA)^3 \cdot (JA) = 0 \) for \(i = s+1, \ldots, t \), etc. We see that \(\tau(x) y = 0 \), so \(\text{Im}(\tau) \subseteq SA \).

Since \(\tau \) is self-adjoint (i.e. \(\tau^* = \tau \)) we conclude that

\[
\text{Ker}(\tau) = \text{Ker}(\tau^*) = \text{Im}(\tau)^{\perp} \supseteq (SA \cap ZA)^{\perp} = JA + KA.
\]

Thus \(HA := \text{Im}(\tau) \) is an ideal of \(ZA \) contained in \(RA \), called the \textit{Higman ideal} of \(ZA \). By Lemma 4.1, it is independent of the choice of dual bases. In the following, we write

\[
1_A = e_1 + \cdots + e_m
\]
with pairwise orthogonal primitive idempotents \(e_1, \ldots, e_m\) of \(A\).

Lemma 4.2. We have \((\tau(e_i)|e_j) = (\dim e_i Ae_j) \cdot 1_F\) for \(i, j = 1, \ldots, m\).

Proof. We consider the decomposition \(A = \bigoplus_{j=1}^m e_i Ae_j\). For \(i, j = 1, \ldots, m\), let \(X_{ij}\) be an \(F\)-basis of \(e_i Ae_j\). Then \(X := \bigcup_{j=1}^m X_{ij}\) is an \(F\)-basis of \(A\). We denote the dual basis of \(X\) by \(X^*\). For \(x \in X\), there is a unique \(x^* \in X^*\) such that \((x|x^*) = 1\). Then the map \(X \rightarrow X^*, x \mapsto x^*\), is a bijection. Moreover, for \(i, j = 1, \ldots, m\), \(X_{ij}^* := \{x^* : x \in X_{ij}\}\) is an \(F\)-basis of \(e_i Ae_j\). Thus

\[
\tau(e_i)e_j = e_j \tau(e_i)e_j = \sum_{x \in X} e_j x^* e_i xe_j = \sum_{x \in X_{ij}} e_j x^* e_i xe_j = \sum_{x \in X_{ij}} x^* x
\]

and

\[
(\tau(e_i)|e_j) = (\tau(e_i)e_j|1) = \sum_{x \in X_{ij}} (x^* x|1) = \sum_{x \in X_{ij}} (x^*|x) = (|X_{ij}| \cdot 1_F = (\dim e_i Ae_j) \cdot 1_F,
\]

so the result is proved.

We may assume that \(e_1, \ldots, e_m\) are numbered in such a way that \(a_1 := e_1, \ldots, a_l := e_l\) represent the conjugacy classes of primitive idempotents in \(A\). We choose an \(F\)-basis \(a_1, \ldots, a_n\) of \(JA + KA\), so that \(a_1, \ldots, a_n\) form an \(F\)-basis of \(A\). We denote the dual basis of \(a_1, \ldots, a_n\) by \(b_1, \ldots, b_n\). As above, \(r_1 := b_1, \ldots, r_l := b_l\) form an \(F\)-basis of \(RA = SA \cap ZA\).

Lemma 4.3. We have \(\tau(e_i) = \sum_{j=1}^l (\dim e_i Ae_j) \cdot r_j\) for \(i = 1, \ldots, l\).

Proof. Let \(i \in \{1, \ldots, l\}\). Then \(\tau(e_i) \in HA \subseteq RA\), so

\[
\tau(e_i) = \sum_{j=1}^l (\tau(e_i)|e_j)r_j = \sum_{j=1}^l (\dim e_i Ae_j) \cdot r_j
\]

by Lemma 4.2.

In the following, suppose that \(\text{char } F = \rho > 0\). We know from Theorem 2.3 that \((T_1A^-)2 \subseteq RA\). We are going to show that, more precisely, \((T_1A^-)2 \subseteq HA\). In the proof, we will make use of the following fact.

Lemma 4.4. Let \(C = (c_{ij})\) be a symmetric \(n \times n\)-matrix with coefficients in the field \(\mathbb{F}_2\) with two elements. Then its main diagonal \(c := (c_{11}, c_{22}, \ldots, c_{nn})\), considered as a vector in \(\mathbb{F}_2^n\), is a linear combination of the rows of \(C\).

Proof. Arguing by induction on \(n\), we may assume that \(n > 1\). If \(c = 0\) then there is nothing to prove. So we may assume that \(c_{ii} = 1\) for some \(i \in \{1, \ldots, l\}\). Permuting the rows and columns of \(C\), if necessary, we may assume that \(c_{11} = 1\). We now perform elementary row operations on \(C\). For \(k = 2, \ldots, n\), we subtract the first row, multiplied by \(c_{k1}\), from the \(k\)-th row. The resulting matrix \(C'\) has the entries

\[
0, c_{k2} - c_{k1}c_{12}, \ldots, c_{kn} - c_{k1}c_{1n}
\]

in its \(k\)-th row and the entries

\[
c_{1k}, c_{2k} - c_{21}c_{1k}, \ldots, c_{nk} - c_{n1}c_{1k}
\]

in its \(k\)-th column. We now remove the first row and the first column from \(C'\) and end up with a symmetric \((n-1) \times (n-1)\)-matrix \(D\) with diagonal entries

\[
c_{kk} - c_{k1}c_{1k} = c_{kk} - c_{1k}^2 = c_{kk} - c_{1k}^2 \quad (k = 2, \ldots, n).
\]
On the other hand, if we subtract the first row of C from c then we obtain the vector
\[c' := (0, c_{22} - c_{12}, \ldots, c_{nn} - c_{1n}). \]
Thus the vector $d := (c_{22} - c_{12}, \ldots, c_{nn} - c_{1n})$ coincides with the main diagonal of D. By induction, d is a linear combination of the rows of D, so c is a linear combination of the rows of C.

As Gary McGuire kindly pointed out to us, a different proof of Lemma 4.4 can be found in [1, Proposition 4.6.2]. We apply Lemma 4.4 in the proof of the following result which is a refinement of Theorem 2.3 (i). The special case of group algebras was first proved in [8, Lemma 5.1].

Theorem 4.5. We always have $(T_1A^\perp)^2 \subseteq HA$.

Proof. If p is odd then, by Theorem 2.3 (iii), we have
\[(T_1A^\perp)^2 \subseteq Z_0A = \sum B ZB = \sum B HB \subseteq HA \]
where B ranges over the simple blocks of A; in fact, if $B = \text{Mat}(d, F)$ for a positive integer d then $HB = ZB$.

Thus we may assume that $p = 2$. Then Lemma 2.2 gives us elements $\alpha_1, \ldots, \alpha_l$ in the prime field of F such that
\[\sum_{i,j} (\dim e_i Ae_j) \cdot \alpha_j = (\dim e_i Ae_i) \cdot 1_F \text{ for } i = 1, \ldots, l. \]
Thus Lemma 3.4 and Lemma 4.3 imply that
\[\zeta_1(1)^2 = \sum_{i=1}^{l} (\dim e_i Ae_i) \cdot r_i = \sum_{i,j=1}^{l} (\dim e_i Ae_j) \cdot \alpha_j r_i = \sum_{j=1}^{l} \alpha_j \tau(e_j) \in HA. \]
Hence Proposition 2.5 implies that $(T_1A^\perp)^2 = ZA \cdot \zeta_1(1)^2 \subseteq HA$.

5. Morita invariance

Let F be an algebraically closed field of characteristic $p > 0$, and let A be a symmetric F-algebra. In this section we investigate the behaviour of the ideals T_nA^\perp of ZA under Morita equivalences. These results will be used in [2].

Proposition 5.1. Let e be an idempotent in A such that $eAe = A$. Then the map
\[f : ZA \longrightarrow Z(eAe), \quad z \longmapsto ez = ze, \]
is an isomorphism of F-algebras mapping T_nA^\perp onto $T_n(eAe)^\perp$, for $n \in \mathbb{N}$.

Proof. Certainly f is a homomorphism of F-algebras. Let $z \in ZA$ such that $0 = f(z) = ez$. Then $0 = AeA = AeAe = Az$, so that $z = 0$. Thus f is injective. Since $eAe = A$ the F-algebras A and eAe are Morita equivalent; in particular, their centers are isomorphic. Hence f is an isomorphism of F-algebras. Lemma 2.1 (iv) implies that $f \circ \zeta_n^A = \zeta_n^{eAe} \circ f$, so
\[f(T_nA^\perp) = f(\zeta_n^A(ZA)) = \zeta_n^{eAe}(f(ZA)) = \zeta_n^{eAe}(Z(eAe)) = T_n(eAe)^\perp \]
by Lemma 2.1 (iii).

We mention two consequences of Proposition 5.1.
Corollary 5.2. Let d be a positive integer, and let A_d denote the symmetric F-algebra $\text{Mat}(d, A)$. Then the map

$$h : ZA \rightarrow ZA_d, \quad z \mapsto z1_d,$$

is an isomorphism of F-algebras mapping T_nA^\perp onto $(T_nA_d)^\perp$, for $n \in \mathbb{N}$.

Proof. We denote the matrix units of A_d by e_{ij} ($i, j = 1, \ldots, d$). Then the map

$$f : A \rightarrow e_{11}A_d e_{11}, \quad a \mapsto ae_{11},$$

is an isomorphism of F-algebras. This implies that $f(ZA) = Z(e_{11}A_d e_{11})$ and $f(T_nA^\perp) = T_n(e_{11}A_d e_{11})^\perp$ for $n \in \mathbb{N}$. On the other hand, Proposition 5.1 implies that the map

$$g : ZA_d \rightarrow Z(e_{11}A_d e_{11}), \quad z \mapsto ze_{11} = e_{11}z,$$

is an isomorphism of F-algebras such that $g((T_nA_d)^\perp) = T_n(e_{11}A_d e_{11})^\perp$ for $n \in \mathbb{N}$. Now observe that h is an isomorphism of F-algebras such that $g \circ h$ is the restriction of f to ZA. Thus $h(T_nA^\perp) = (T_nA_d)^\perp$ for $n \in \mathbb{N}$.

Corollary 5.3. Let B be a symmetric F-algebra which is Morita equivalent to A. Then there is an isomorphism of F-algebras $ZA \rightarrow ZB$ mapping T_nA^\perp onto T_nB^\perp, for $n \in \mathbb{N}$.

Proof. Let e be an idempotent in A such that eAe is a basic algebra of A, and let f be an idempotent in B such that fBf is a basic algebra of B. Then $AeA = A$ and $BfB = B$. Moreover, eAe and fBf are isomorphic since A and B are Morita equivalent. Thus Proposition 5.1 yields a chain of isomorphisms

$$ZA \rightarrow Z(eAe) \rightarrow Z(fBf) \rightarrow ZB$$

mapping T_nA^\perp onto T_nB^\perp, for $n \in \mathbb{N}$.

It would be interesting to know whether Corollary 5.3 extends to symmetric F-algebras which are derived equivalent (cf. [5]).

Question 5.4. Suppose that A and B are derived equivalent symmetric F-algebras. Is there an isomorphism of F-algebras $ZA \rightarrow ZB$ mapping T_nA^\perp onto T_nB^\perp, for $n \in \mathbb{N}$?

6. Some dual results

Let F be an algebraically closed field of characteristic $p > 0$, and let A be a symmetric F-algebra. For $n \in \mathbb{N},$

$$T_nZA := \{z \in ZA : z^{p^n} = 0\}$$

is an ideal of ZA. In this way we obtain an ascending chain of ideals

$$0 = T_0ZA \subseteq T_1ZA \subseteq T_2ZA \subseteq \ldots \subseteq JZA \subseteq ZA$$

of ZA such that

$$\sum_{n=0}^{\infty} T_nZA = JZA.$$

This ascending chain of ideals turns out to be related to the descending chain of ideals

$$ZA = T_0A^\perp \supseteq T_1A^\perp \supseteq T_2A^\perp \ldots \supseteq RA \supseteq 0$$

of ZA considered before.
Proposition 6.1. Let \(n \in \mathbb{N} \). Then \((T_nA^\perp)(T_nZA) = 0\).

Proof. Let \(y \in ZA \) and \(z \in T_nZA \), so that \(z^{p^n} = 0 \). Then Lemma 2.1 (i) implies that
\[
\zeta_n(y)z = \zeta_n(yz^{p^n}) = \zeta_n(y0) = \zeta_n(0) = 0.
\]
Hence \((T_nA^\perp)(T_nZA) = (\text{Im } \zeta_n)(T_nZA) = 0\), by Lemma 2.1 (iii).

The result above is essentially [9, Proposition 4]. We conclude that
\[
T_nZA \subseteq \{ z \in ZA : z(T_nA^\perp) = 0 \} \subseteq \{ z \in ZA : z\zeta_n(1) = 0 \}.
\]

In [2], we will see that these inclusions are proper in general, even for group algebras of finite groups. If \(n \) is sufficiently large then \(T_nZA = JZA \) and \(T_nA^\perp = RA \), and certainly
\[
JZA = \{ z \in ZA : z \cdot RA = 0 \}.
\]

Also, if \(n \) is large and \(A = FG \) for a finite group \(G \) then \(\zeta_n(1) = G^+_p \) where \(G_p \) denotes the set of \(p \)-elements in \(G \) (cf. [7, (48)]), and it is known that
\[
JZFG = \{ z \in ZFG : zG^+_p = 0 \}
\]
(cf. [7, (59)]). However, it is easy to construct an example of a symmetric \(F \)-algebra \(A \) such that
\[
JZA \neq \{ z \in ZA : z\zeta_n(1) = 0 \}
\]
for all sufficiently large \(n \).

For \(n \in \mathbb{N} \), the ideal \(T_nZA \) of \(ZA \) is related to a semilinear map \(\kappa_n : A/KA \rightarrow A/KA \) first constructed in [6 IV]; \(\kappa_n \) is defined in such a way that
\[
(z^{p^n}|x) = (z|\kappa_n(x))^{p^n} \quad \text{for} \quad z \in ZA \quad \text{and} \quad x \in A/KA;
\]
here we set \((z|a+KA) := (z|a)\) for \(z \in ZA \) and \(a \in A \). Also, we set \((a+KA)^{p^n} := a^{p^n} + KA\) for \(a \in A \). We recall the following properties of \(\kappa_n \) (cf. [7, (50) - (53)]).

Lemma 6.2. Let \(m, n \in \mathbb{N} \), let \(x, y \in A/KA \), and let \(z \in ZA \). Then the following holds:
(i) \(\kappa_n(x+y) = \kappa_n(x) + \kappa_n(y) \), \(z\kappa_n(x) = \kappa_n(z^{p^n}x) \) and \(\kappa_n(z^{p^n}x) = \zeta_n(z)x \).
(ii) \(\kappa_m \circ \kappa_n = \kappa_{m+n} \).
(iii) \(\text{Im}(\kappa_n) = T_nZ/A^\perp/KA \).

Our next result is a dual version of Theorem 2.3. For simplicity, we concentrate on the case where \(A \) is a non-simple block. (If \(A \) is a simple block then \(T_1ZA = 0 \), so \(T_1Z/A^\perp = A \). Moreover, we have \(T_2A^\perp = T_1A^\perp = ZA \) in this case.)

Proposition 6.3. Suppose that \(A \) is a non-simple block. Then the following holds:
(i) \((T_1A^\perp)(T_1ZA^\perp) \subseteq KA \) for \(p \neq 2 \).
(ii) \((T_2A^\perp)(T_1ZA^\perp) \subseteq KA \) and \((T_1A^\perp)(T_2ZA^\perp) \subseteq KA \) for \(p = 2 \).
(iii) \((T_1A^\perp)(T_2ZA^\perp) \subseteq JZA^\perp \) for \(p = 2 \). Moreover, in this case we have \((T_1A^\perp)(T_1ZA^\perp) \subseteq KA \) if and only if \(\zeta_1(1)^2 = 0 \).

Proof. (i) Let \(y \in ZA \) and \(x \in A/KA \). Then \(\zeta_1(y)\kappa_1(x) = \kappa_1(\zeta_1(y)^p x) = 0 \) since \(\zeta_1(y)^p \in (T_1A^\perp)^p = 0 \) by Theorem 2.3 (iii). Thus
\[
(T_1A^\perp)(T_1ZA^\perp/KA) = (\text{Im } \zeta_1)(\text{Im } \kappa_1) = 0,
\]
and (i) is proved.
Similarly, we have $\zeta_2(y)\kappa_1(x) = \kappa_1(\zeta_2(y)^2x) = 0$ since $\zeta_2(y)^2 \in (T_2A^\perp)^2 = 0$, by Theorem 2.3 (ii). Thus

$$\langle T_2A^\perp\rangle(T_1ZA^\perp/KA) = (\text{Im } \zeta_2)(\text{Im } \kappa_1) = 0.$$

Similarly, we have $\zeta_1(y)\kappa_2(x) = \kappa_2(\zeta_1(y)^2x) = 0$ since $\zeta_1(y)^2 \in (T_1A^\perp)^3 = 0$ by Theorem 2.3 (ii). Thus

$$\langle T_1A^\perp\rangle(T_2ZA^\perp/KA) = (\text{Im } \zeta_1)(\text{Im } \kappa_2) = 0,$$

and (ii) follows.

(iii) Again, let x, y be as in (i). Then

$$\zeta_1(y)\kappa_1(x) = \kappa_1(\zeta_1(y)^2x) = \kappa_1(\zeta_1(y)\kappa_1(yx^2)) \in \kappa_1((\text{Im } \zeta_1)(\text{Im } \kappa_1)).$$

Iteration yields

$$(\text{Im } \zeta_1)(\text{Im } \kappa_1) \subseteq \kappa_1((\text{Im } \zeta_1)(\text{Im } \kappa_1)) \subseteq \kappa_1(\kappa_1((\text{Im } \zeta_1)(\text{Im } \kappa_1))) = \kappa_2((\text{Im } \zeta_1)(\text{Im } \kappa_1)) \subseteq \ldots .$$

Thus

$$\langle T_1A^\perp\rangle(T_1ZA^\perp/KA) = (\text{Im } \zeta_1)(\text{Im } \kappa_1) \subseteq \bigcap_{n=0}^{\infty} \text{Im}(\kappa_n) = \bigcap_{n=0}^{\infty} T_nZA^\perp/KA = JZA^\perp/KA,$$

and the first assertion of (iii) is proved. Now note that $(T_1A^\perp)(T_1ZA^\perp) \subseteq KA$ if and only if

$$0 = (\langle T_1A^\perp\rangle T_1ZA^\perp)(ZA) = (T_1A^\perp)(T_1ZA^\perp)$$

if and only if $T_1A^\perp \subseteq T_1ZA$ if and only if $z^2 = 0$ for all $z \in T_1A^\perp$. But $(T_1A^\perp)^2 = F\zeta_1(1)^2$ by Corollary 2.4, so $z^2 = 0$ for all $z \in T_1A^\perp$ if and only if $\zeta_1(1)^2 = 0$.

Note that, in the situation of Proposition 6.3 (iii), we have $\zeta_1(1)^2 = 0$ if and only if all diagonal Cartan invariants of A are even, by Lemma 3.4. Also, we have

$$\dim(T_1A^\perp)(T_1ZA^\perp) + KA/KA \leq 1.$$

There is the following dual of Proposition 6.1.

Proposition 6.4. Let $n \in \mathbb{N}$. Then $(T_nZA)(T_nZA^\perp) \subseteq KA$.

Proof. Let $z \in T_nZA$ and $x \in A/KA$. Then

$$z\kappa_n(x) = \kappa_n(z^{p^n}x) = \kappa_n(0x) = 0.$$

Thus $(T_nZA)(T_nZA^\perp/KA) = (T_nZA)(\text{Im } \kappa_n) = 0$, and the result follows.

Acknowledgments. The ideas in this paper have their origin in visits of B. Külshammer to the National University of Ireland, Maynooth, and to the Technical University of Budapest, in September 2003. B. Külshammer is very grateful for the invitation to Maynooth and for the hospitality received there. His visit to Maynooth was partially funded by a New Researcher Award from the National University of Ireland, Maynooth. B. Külshammer’s visit to Budapest was kindly supported by the German-Hungarian exchange project No. D-4/99 (TéT-BMBF) and by the Hungarian National Science Foundation Research Grant T034878 and T042481.
References

8. J.C. Murray, Blocks of defect zero and products of elements of order p, J. Algebra 214 (1999), 385-399