Change-point models in finances and enlargements of filtration.

Lioudmila Vostrikova1

1LAREMA, U.M.R. 6093 associé au CNRS
Université d’Angers

Workshop "Enlargement of Filtrations and Applications to Finance and Insurance"
31 May - 4 June 2010, Jena, Germany
Plan

1. Change-point models
2. The f-divergence minimal martingale measures
3. Optimal strategies for utility maximisation
4. Optimal strategies for utility maximisation in exponential Levy models
5. The f-divergence minimal martingale measures in change-point situation.
6. Optimal strategies for utility maximisation in change-point situation
Models with change points

- The parameters of financial models are generally highly dependent on time (information in the press, price of raw materials, stock price hits some psychological level)
- This time-dependency of the parameters can often be described using a piece-wise constant function
- the time of change (change-point) for the parameters is not explicitly known, but it is often possible to make reasonable assumptions about its nature and use statistical tests for its detection
Models with change points

- The parameters of financial models are generally highly dependent on time (information in the press, price of raw materials, stock price hits some psychological level)
- This time-dependency of the parameters can often be described using a piece-wise constant function
- The time of change (change-point) for the parameters is not explicitly known, but it is often possible to make reasonable assumptions about its nature and use statistical tests for its detection
Models with change points

1. The parameters of financial models are generally highly dependent on time (information in the press, price of raw materials, stock price hits some psychological level).

2. This time-dependency of the parameters can often be described using a piece-wise constant function.

3. The time of change (change-point) for the parameters is not explicitly known, but it is often possible to make reasonable assumptions about its nature and use statistical tests for its detection.

Lioudmila Vostrikova

Talk of 3 June 2010 on Workshop "Enlargement of Filtrations"
Models with change points

Models with change points

Models with change points

Exponential Levy model with change-point

- Let $L = (L_t)_{t \geq 0}$ be a Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion parameter and ν the Levy measure.
- Let $\tilde{L} = (\tilde{L}_t)_{t \geq 0}$ be a Levy process which is independent from L and with parameters $(\tilde{b}, \tilde{c}, \tilde{\nu})$.
- $X_t = L_t \mathbb{1}_{\{\tau > t\}} + (L_\tau - \tilde{L}_t) \mathbb{1}_{\{\tau \leq t\}}$
- $r(t) = r \mathbb{1}_{\{\tau > t\}} + \tilde{r} \mathbb{1}_{\{\tau \leq t\}}$
- $S_t = S_0 \exp(X_t), \quad B_t = B_0 \exp(\int_0^t r(s)ds)$
Exponential Levy model with change-point

Let $L = (L_t)_{t \geq 0}$ be a Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion parameter and ν the Levy measure.

Let $\tilde{L} = (\tilde{L}_t)_{t \geq 0}$ be a Levy process which is independent from L and with parameters $(\tilde{b}, \tilde{c}, \tilde{\nu})$.

- $X_t = L_t \mathbb{1}_{\{\tau > t\}} + (L_\tau + \tilde{L}_t - \tilde{L}_\tau) \mathbb{1}_{\{\tau \leq t\}}$
- $r(t) = r \mathbb{1}_{\{\tau > t\}} + \tilde{r} \mathbb{1}_{\{\tau \leq t\}}$
- $S_t = S_0 \exp(X_t), \ B_t = B_0 \exp(\int_0^t r(s)ds)$
Exponential Levy model with change-point

- Let $L = (L_t)_{t \geq 0}$ be a Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion parameter and ν the Levy measure.
- Let $\tilde{L} = (\tilde{L}_t)_{t \geq 0}$ be a Levy process which is independent from L and with parameters $(\tilde{b}, \tilde{c}, \tilde{\nu})$.
- $X_t = L_t \mathbb{I}_{\{\tau > t\}} + (L_\tau + \tilde{L}_t - \tilde{L}_\tau) \mathbb{I}_{\{\tau \leq t\}}$
- $r(t) = r \mathbb{I}_{\{\tau > t\}} + \tilde{r} \mathbb{I}_{\{\tau \leq t\}}$
- $S_t = S_0 \exp(X_t), \quad B_t = B_0 \exp(\int_0^t r(s)ds)$
Exponential Levy model with change-point

Let $L = (L_t)_{t \geq 0}$ be a Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion parameter and ν the Levy measure.

Let $\tilde{L} = (\tilde{L}_t)_{t \geq 0}$ be a Levy process which is independent from L and with parameters $(\tilde{b}, \tilde{c}, \tilde{\nu})$.

$$X_t = L_t \mathbb{1}_{\{\tau > t\}} + (L_\tau + \tilde{L}_t - \tilde{L}_\tau) \mathbb{1}_{\{\tau \leq t\}}$$

$$r(t) = r \mathbb{1}_{\{\tau > t\}} + \tilde{r} \mathbb{1}_{\{\tau \leq t\}}$$

$$S_t = S_0 \exp(X_t), \quad B_t = B_0 \exp(\int_0^t r(s) ds)$$
Exponential Levy model with change-point

Let $L = (L_t)_{t \geq 0}$ be a Levy process with parameters (b, c, ν) where b is the drift parameter, c the diffusion parameter and ν the Levy measure.

Let $\tilde{L} = (\tilde{L}_t)_{t \geq 0}$ be a Levy process which is independent from L and with parameters $(\tilde{b}, \tilde{c}, \tilde{\nu})$.

$$X_t = L_t 1_{\{\tau > t\}} + (L_\tau + \tilde{L}_t - \tilde{L}_\tau) 1_{\{\tau \leq t\}}$$

$$r(t) = r 1_{\{\tau > t\}} + \tilde{r} 1_{\{\tau \leq t\}}$$

$$S_t = S_0 \exp(X_t), \quad B_t = B_0 \exp(\int_0^t r(s)ds)$$
Filtrations

- Natural filtration of X denoted $\mathbb{F}^X = (\mathcal{F}_t^X)_{0 \leq t \leq T}$
- Progressively enlarged filtration denoted $\hat{\mathbb{F}} = (\hat{\mathcal{F}}_t)_{0 \leq t \leq T}$

$$\hat{\mathcal{F}}_t = \bigcap_{s > t} (\mathcal{F}_s^X \vee \mathcal{H}_s)$$

- Initially enlarged filtration denoted $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$

$$\mathcal{F}_t = \bigcap_{s > t} (\mathcal{F}_s^X \vee \mathcal{H}_T)$$
Filtrations

- Natural filtration of X denoted $\mathbb{F}^X = (\mathcal{F}^X_t)_{0 \leq t \leq T}$
- Progressively enlarged filtration denoted $\hat{\mathbb{F}} = (\hat{\mathcal{F}}_t)_{0 \leq t \leq T}$

$$\hat{\mathcal{F}}_t = \bigcap_{s > t} (\mathcal{F}^X_s \vee \mathcal{H}_s)$$

- Initially enlarged filtration denoted $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$

$$\mathcal{F}_t = \bigcap_{s > t} (\mathcal{F}^X_s \vee \mathcal{H}_T)$$
Filtrations

- Natural filtration of X denoted $\mathbb{F}^X = (\mathcal{F}^X_t)_{0 \leq t \leq T}$
- Progressively enlarged filtration denoted $\hat{\mathbb{F}} = (\hat{\mathcal{F}}_t)_{0 \leq t \leq T}$

$$\hat{\mathcal{F}}_t = \bigcap_{s > t} (\mathcal{F}^X_s \lor \mathcal{H}_s)$$

- Initially enlarged filtration denoted $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$

$$\mathcal{F}_t = \bigcap_{s > t} (\mathcal{F}^X_s \lor \mathcal{H}_T)$$
Minimal martingale measures

- risk-minimisation in an L^2-sense (Follmer, Schweizer; Schweizer)
- Hellinger integrals minimisation (Choulli, Stricker; Choulli, Stricker, Li)
- entropy minimisation (Miyahara; Fujiara, Miyahara)
- f^q-martingale measures (Jeanblanc, Kloppel, Miyahara)
Minimal martingale measures

- risk-minimisation in an L^2-sense (Follmer, Schweizer; Schweizer)
- Hellinger integrals minimisation (Choulli, Stricker; Choulli, Stricker, Li)
- entropy minimisation (Miyahara; Fujiara, Miyahara)
- f^q-martingale measures (Jeanblanc, Kloppel, Miyahara)
Minimal martingale measures

- risk-minimisation in an L^2-sense (Follmer, Schweizer; Schweizer)
- Hellinger integrals minimisation (Choulli, Stricker; Choulli, Stricker, Li)
- entropy minimisation (Miyahara; Fujiara, Miyahara)
- f^q-martingale measures (Jeanblanc, Kloppel, Miyahara)
Minimal martingale measures

- risk-minimisation in an L^2-sense (Follmer, Schweizer; Schweizer)
- Hellinger integrals minimisation (Choulli, Stricker; Choulli, Stricker, Li)
- entropy minimisation (Miyahara; Fujiara, Miyahara)
- f^q-martingale measures (Jeanblanc, Kloppel, Miyahara)
\(f \)-divergence

- \(P \) and \(Q \) two probability measures, \(Q \ll P \)
- \(f \) is a convex function on \(\mathbb{R}^+ \)
- \(f \)-divergence introduced by Czisar is
 \[
 f(Q|P) = \mathbb{E}_P[f\left(\frac{dQ}{dP}\right)]
 \]
- In particular cases, when \(f(x) = -x^\alpha, 0 < \alpha < 1 \) we obtain
 - Hellinger integral, when \(f(x) = x \ln(x) \) we obtain entropy,
 - with \(f(x) = (1 - x)^2 \) we have squared variance distance,
 - with \(f(x) = |1 - x| \) we have variance distance.
f-divergence

- P and Q two probability measures, $Q \ll P$
- f is a convex function on $\mathbb{R}^+,*$
- f-divergence introduced by Czisar is

$$f(Q|P) = \mathbb{E}_P[f\left(\frac{dQ}{dP}\right)]$$

- In particular cases, when $f(x) = -x^\alpha, 0 < \alpha < 1$ we obtain
 - Hellinger integral, when $f(x) = x \ln(x)$ we obtain entropy,
 - with $f(x) = (1 - x)^2$ we have squared variance distance, with
 - $f(x) = |1 - x|$ we have variance distance.
f-divergence

- P and Q two probability measures, $Q \ll P$
- f is a convex function on \mathbb{R}^+, \ast
- f-divergence introduced by Csisar is

$$f(Q|P) = \mathbb{E}_P[f\left(\frac{dQ}{dP}\right)]$$

- In particular cases, when $f(x) = -x^\alpha, 0 < \alpha < 1$ we obtain
 - Hellinger integral, when $f(x) = x \ln(x)$ we obtain entropy,
 - with $f(x) = (1 - x)^2$ we have squared variance distance, with
 - $f(x) = |1 - x|$ we have variance distance.
\(f \)-divergence

- \(P \) and \(Q \) two probability measures, \(Q \ll P \)
- \(f \) is a convex function on \(\mathbb{R}^+ \)
- \(f \)-divergence introduced by Czisar is

\[
f(Q|P) = \mathbb{E}_P[f\left(\frac{dQ}{dP}\right)]
\]

- In particular cases, when \(f(x) = -x^\alpha, 0 < \alpha < 1 \) we obtain
 - Hellinger integral,
 - when \(f(x) = x \ln(x) \) we obtain entropy,
 - with \(f(x) = (1 - x)^2 \) we have squared variance distance,
 - with \(f(x) = |1 - x| \) we have variance distance.
Definitions

We say that Q^* is an f-divergence minimal martingale measure if $f(Q^*|P) < \infty$ and

$$f(Q^*|P) = \inf_{Q \in \mathcal{M}(P)} f(Q|P)$$

where $\mathcal{M}(P)$ is the set of equivalent martingale measures.

We say that an f-divergence minimal martingale measure Q^* is invariant under scaling if for all $x \in \mathbb{R}^+$, *

$$f(xQ^*|P) = \inf_{Q \in \mathcal{M}(P)} f(xQ|P)$$

For a given exponential Levy model $S = e^L$, we say that an f-divergence minimal martingale measure Q^* preserves the Levy property if L remains a Levy process under Q^*.

Lioudmila Vostrikova
talk of 3 June 2010 on Workshop "Enlargement of Filtrations and Applications to Finance and Insurance, Jena, Germany
Definitions

- We say that Q^* is an f-divergence minimal martingale measure if $f(Q^*|P) < \infty$ and

$$f(Q^*|P) = \inf_{Q \in \mathcal{M}(P)} f(Q|P)$$

where $\mathcal{M}(P)$ is the set of equivalent martingale measures.

- We say that an f-divergence minimal martingale measure Q^* is invariant under scaling if for all $x \in \mathbb{R}^+,^*$

$$f(xQ^*|P) = \inf_{Q \in \mathcal{M}(P)} f(xQ|P)$$

- For a given exponential Levy model $S = e^L$, we say that an f-divergence minimal martingale measure Q^* preserves the Levy property if L remains a Levy process under Q^*.
Definitions

- We say that Q^* is an f-divergence minimal martingale measure if $f(Q^*|P) < \infty$ and
 \[
 f(Q^*|P) = \inf_{Q \in \mathcal{M}(P)} f(Q|P)
 \]
 where $\mathcal{M}(P)$ is the set of equivalent martingale measures.

- We say that an f-divergence minimal martingale measure Q^* is invariant under scaling if for all $x \in \mathbb{R}^+,*$
 \[
 f(xQ^*|P) = \inf_{Q \in \mathcal{M}(P)} f(xQ|P)
 \]

- For a given exponential Levy model $S = e^L$, we say that an f-divergence minimal martingale measure Q^* preserves the Levy property if L remains a Levy process under Q^*.
Conservation of Levy property

Theorem

Let f be a strictly convex two times differentiable function, $f''(x) = ax^\gamma$ with $a > 0$, $\gamma \in \mathbb{R}$, and such that an f-minimal martingale measure Q^* exists. Then it preserves the Levy property of initial Levy process and it is invariant under scaling.
Conservation of Levy property

Theorem

Let f be a strictly convex function, $f \in C^3(\mathbb{R}^+,\ast)$, such that an f-minimal martingale measure Q^* exists and preserves the Levy property. Suppose that L contains either a non-zero continuous martingale part either the Levy measure ν^P has a strictly positive density with respect to the Lebesgue measure. Then $f'''(x) = ax^\gamma$ with $a > 0$ and $\gamma \in \mathbb{R}$, and up to a multiplicative constant and a linear term, $f(x) = x \ln(x)$, or $f(x) = -\ln(x)$ or $f(x) = x^p$ with $p \neq 0,1$. Moreover, Q^* is invariant under scaling.
Utility function

- two assets: a non-risky asset B, with interest rate r, and a risky asset S on filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$
- $\tilde{S} = (B, S)$ is the price process and $\tilde{\Phi} = (\phi^0, \phi)$ is strategy
- A predictable \tilde{S}-integrable process $\tilde{\Phi}$ will be said to be a self-financing admissible strategy if for every $t \in [0, T]$ and x initial capital
 \[\tilde{\Phi}_t \cdot \tilde{S}_t = x + \int_0^t \tilde{\Phi}_u \cdot d\tilde{S}_u \]
 where the stochastic integral in the right-hand side is bounded from below.
- If the interest rate r is 0, then terminal wealth at time T is
 \[V_T(\phi) = x + \int_0^T \phi_s dS_s \]
Utility function

- two assets: a non-risky asset B, with interest rate r, and a risky asset S on filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$
- $\mathbf{S} = (B, S)$ is the price process and $\mathbf{\Phi} = (\phi^0, \phi)$ is strategy
- A predictable \mathbf{S}-integrable process $\mathbf{\Phi}$ will be said to be a self-financing admissible strategy if for every $t \in [0, T]$ and x initial capital

$$\mathbf{\Phi}_t \cdot \mathbf{S}_t = x + \int_0^t \mathbf{\Phi}_u \cdot d\mathbf{S}_u$$

where the stochastic integral in the right-hand side is bounded from below.

- if the interest rate r is 0, then terminal wealth at time T is

$$V_T(\phi) = x + \int_0^T \phi_s dS_s$$
Utility function

- two assets: a non-risky asset B, with interest rate r, and a risky asset S on filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$
- $\tilde{S} = (B, S)$ is the price process and $\tilde{\Phi} = (\phi^0, \phi)$ is strategy
- A predictable \tilde{S}-integrable process $\tilde{\Phi}$ will be said to be a self-financing admissible strategy if for every $t \in [0, T]$ and x initial capital
 \[\tilde{\Phi}_t \cdot \tilde{S}_t = x + \int_0^t \tilde{\Phi}_u \cdot d\tilde{S}_u\]
 where the stochastic integral in the right-hand side is bounded from below.
- if the interest rate r is 0, then terminal wealth at time T is
 \[V_T(\phi) = x + \int_0^T \phi_s dS_s\]
Utility function

- two assets: a non-risky asset B, with interest rate r, and a risky asset S on filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$
- $\tilde{S} = (B, S)$ is the price process and $\tilde{\Phi} = (\phi^0, \phi)$ is strategy
- A predictable \tilde{S}-integrable process $\tilde{\Phi}$ will be said to be a self-financing admissible strategy if for every $t \in [0, T]$ and x initial capital

$$\tilde{\Phi}_t \cdot \tilde{S}_t = x + \int_0^t \tilde{\Phi}_u \cdot d\tilde{S}_u$$

where the stochastic integral in the right-hand side is bounded from below.
- if the interest rate r is 0, then terminal wealth at time T is

$$V_T(\phi) = x + \int_0^T \phi_s dS_s$$
Utility function

- two assets: a non-risky asset B, with interest rate r, and a risky asset S on filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$
- $\bar{S} = (B, S)$ is the price process and $\bar{\Phi} = (\phi^0, \phi)$ is strategy
- A predictable \bar{S}-integrable process $\bar{\Phi}$ will be said to be a self-financing admissible strategy if for every $t \in [0, T]$ and x initial capital

$$\bar{\Phi}_t \cdot \bar{S}_t = x + \int_0^t \bar{\Phi}_u \cdot d\bar{S}_u$$

where the stochastic integral in the right-hand side is bounded from below.
- if the interest rate r is 0, then terminal wealth at time T is

$$V_T(\phi) = x + \int_0^T \phi_s dS_s$$
Optimal strategies

Let u denote a strictly increasing, strictly concave, continuously differentiable function on $\text{dom}(u) = \{x \in \mathbb{R} | u(x) > -\infty\}$ which satisfies

$$u'(+\infty) = \lim_{x \to +\infty} u'(x) = 0,$$

$$u'(<\bar{x}) = \lim_{x \to \bar{x}} u'(x) = +\infty$$

where $\bar{x} = \inf\{u \in \text{dom}(u)\}$.

Utility maximizing strategy ϕ^*:

$$\sup_{\phi \in \mathcal{A}} E_P(u(V_T(\phi))) = E_P(u(V_T(\phi^*)))$$
As has been shown in Goll, Ruschendorf that there is a strong link between this optimisation problem and the previous problem of finding f-minimal martingale measures. Let f be the convex conjugate function of u:

$$f(y) = \sup_{x \in \mathbb{R}} \{u(x) - xy\}$$

We recall that in particular

- if $u(x) = \ln(x)$ then $f(x) = -\ln(x) - 1$,
- if $u(x) = \frac{x^p}{p}$, $p < 1$ then $f(x) = -\frac{p - 1}{p}x^{\frac{p}{p-1}}$,
- if $u(x) = 1 - e^{-x}$ then $f(x) = 1 - x + x \ln(x)$.
Theorem

Let $x \in \mathbb{R}^+$ be fixed. Let Q^* be an equivalent f-minimal martingale measure which satisfies

$$\mathbb{E}_P[f(\lambda \frac{dQ^*_T}{dP_T})] < \infty, \quad \mathbb{E}_{Q^*}[|f'(\lambda \frac{dQ^*_T}{dP_T})|] < \infty$$

with λ such that

$$\mathbb{E}_{Q^*}[f'(\lambda \frac{dQ^*_T}{dP_T})] = x.$$
Then
\[-f'(\lambda \frac{dQ^*}{dP_T}) = x + \int_0^T \phi_u dS_u \]

where \(\phi \) is predictable function such that \((\int_0^* \phi_u dS_u)\) is \(Q^*\)-martingale. If the last relation holds, then \(\Phi = (\phi^0, \phi) \) with \(\phi^0_t = x + \int_0^t \phi_u dS_u - \phi_t S_t \) is an admissible optimal minimax portfolio strategy.
Let P be the physical measure and Q be an equivalent martingale measure obtained by minimisation of some f-divergence (or equivalently by maximisation of the corresponding utility function) and which preserves the Levy property of L.

Let $\zeta = (\zeta_t)_{t \geq 0}$ be the Radon-Nikodym density process of Q with respect to P:

$$\zeta_t = \frac{dQ_t}{dP_t}.$$

Let u be a utility function and f its convex conjugate.

We set

$$q(t, x) = \mathbb{E}_P[\zeta_{T-t}^2 f''(x \lambda \zeta_{T-t})].$$
Optimal strategies in exponential Levy models

- Let P be the physical measure and Q be an equivalent martingale measure obtained by minimisation of some f-divergence (or equivalently by maximisation of the corresponding utility function) and which preserves the Levy property of L.

- Let $\zeta = (\zeta_t)_{t \geq 0}$ be the Radon-Nikodym density process of Q with respect to P:

\[
\zeta_t = \frac{dQ_t}{dP_t}.
\]

- Let u be a utility function and f its convex conjugate.

- We set

\[
q(t, x) = \mathbb{E}_P[\zeta_{T-t}^2 f''(x \lambda \zeta_{T-t})]
\]

Lioudmila Vostrikova talk of 3 June 2010 on Workshop "Enlargement of Filtrations and Applications to Finance and Insurance, Jena, Germany"
Optimal strategies in exponential Levy models

- Let P be the physical measure and Q be an equivalent martingale measure obtained by minimisation of some f-divergence (or equivalently by maximisation of the corresponding utility function) and which preserves the Levy property of L.

- Let $\zeta = (\zeta_t)_{t \geq 0}$ be the Radon-Nikodym density process of Q with respect to P:

$$\zeta_t = \frac{dQ_t}{dP_t}.$$

- Let u be a utility function and f its convex conjugate.

- We set

$$q(t, x) = \mathbb{E}_P[\zeta_{T-t}^2 f''(x\lambda\zeta_{T-t})].$$
Optimal strategies in exponential Levy models

- Let P be the physical measure and Q be an equivalent martingale measure obtained by minimisation of some f-divergence (or equivalently by maximisation of the corresponding utility function) and which preserves the Levy property of L.
- Let $\zeta = (\zeta_t)_{t \geq 0}$ be the Radon-Nikodym density process of Q with respect to P:
 $$\zeta_t = \frac{dQ_t}{dP_t}.$$
- Let u be a utility function and f its convex conjugate.
- We set
 $$q(t, x) = \mathbb{E}_P [\zeta_{T-t}^2 f''(x \lambda \zeta_{T-t})]$$
Optimal strategies result

Theorem

We suppose that f is a strictly convex function from $C^3(\mathbb{R}^+,*)$ such that the f-minimal martingale measure Q exists and preserves the Levy property of L. We also suppose that uniformly on the compact sets of $\lambda > 0$ and uniformly in $0 \leq t \leq T$,

\[\mathbb{E}_P|f(\lambda \zeta_T)| < \infty, \quad \mathbb{E}_P \left[|\zeta_t f'(\lambda \zeta_t)| \right] < \infty, \quad \mathbb{E}_P \left[(\zeta_t)^2 f''(\lambda \zeta_t) \right] < \infty \]
Then, for an initial capital $\rho(0, 1) = \mathbb{E}_Q f(\lambda \zeta_T)$ and a utility function u, the optimal strategy exists and is given by

$$\phi_t = -\frac{\lambda \beta \zeta_t}{S_t} q(t, \zeta_t)$$

If $f''(x) = ax^\gamma$ with $a > 0$ then

$$\phi_t = -\frac{a\beta \lambda^{\gamma+1} \zeta_t}{S_t} \mathbb{E}_P [\zeta_{T-t}^{\gamma+2}]$$
Hypothesis and notations

We introduce the following hypotheses:

- (H1): The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* relative to L and \tilde{L} exist.

- (H2): The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* preserve the Levy property and are invariant under scaling.

- (H3): For all $c > 0$ and $t \in [0, T]$, we have: $\mathbb{E}_Q |f'(c \zeta^*_t)| < \infty$, $\mathbb{E}_{\tilde{Q}} |f'(c \tilde{\zeta}^*_t)| < \infty$ where ζ^* and $\tilde{\zeta}^*$ are the densities of the f-minimal equivalent martingale measures Q^* and \tilde{Q}^* with respect to P and \tilde{P} respectively.
Hypothesis and notations

We introduce the following hypotheses:

- **(H1):** The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* relative to L and \tilde{L} exist.

- **(H2):** The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* preserve the Levy property and are invariant under scaling.

- **(H3):** For all $c > 0$ and $t \in [0, T]$, we have: $\mathbb{E}_Q |f'(c \zeta_t^*)| < \infty$, $\mathbb{E}_{\tilde{Q}} |f'(c \tilde{\zeta}_t^*)| < \infty$ where ζ^* and $\tilde{\zeta}^*$ are the densities of the f-minimal equivalent martingale measures Q^* and \tilde{Q}^* with respect to P and \tilde{P} respectively.
Hypothesis and notations

We introduce the following hypotheses:

- **(H1):** The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* relative to L and \tilde{L} exist.

- **(H2):** The f-divergence minimal equivalent martingale measures Q^* and \tilde{Q}^* preserve the Levy property and are invariant under scaling.

- **(H3):** For all $c > 0$ and $t \in [0, T]$, we have:
 \[E_Q | f'(c \, \zeta^*_t) | < \infty, \quad E_{\tilde{Q}} | f'(c \, \tilde{\zeta}^*_t) | < \infty \]
 where ζ^* and $\tilde{\zeta}^*$ are the densities of the f-minimal equivalent martingale measures Q^* and \tilde{Q}^* with respect to P and \tilde{P} respectively.
The f-divergence minimal martingale measures

Optimal strategies for utility maximisation

Optimal strategies for utility maximisation in exponential Levy models

The f-divergence minimal martingale measures in change-point situation.

Optimal strategies for utility maximisation in change-point situation.

Theorem

Assume that f is a strictly convex function, $f \in C^1(\mathbb{R}^+,\ast)$, and that (H1), (H2), (H3) hold. Then if the f-minimal martingale measure Q^* for the change-point model exists, it has the following structure:

$$
\frac{dQ_T^*}{dP_T} = c(\tau) z_T^*(\tau)
$$

where $c(\cdot)$ is a measurable function $[0, T] \rightarrow \mathbb{R}^+$ such that $E c(\tau) = 1$.

We set for $t \in [0, T]$

$$
z_T^*(t) = \zeta_T^* \frac{\tilde{\zeta}_T^*}{\tilde{\zeta}_T^*}
$$

Lioudmila Vostrikova

talk of 3 june 2010 on Workshop "Enlargement of Filtrations and Applications to Finance and Insurance, Jena, Germany"
f divergence MME

For $c > 0$, let

$$\lambda_t(c) = \mathbb{E}[f'(c z_T^*(t)) z_T^*(t)]$$

where the expectation is taken with respect to \mathbb{P} and $c_t(\lambda)$ is its right-continuous inverse.

Then, if there exists λ^* such that

$$\int_0^T c_t(\lambda^*) d\alpha(t) = 1$$

the f- minimal equivalent measure for a change-point situation exists and is given by the previous expression with $c^*(t) = c_t(\lambda^*)$ for $t \in [0, T]$.
In particular, if \(f'(x) = ax^\gamma \), for \(a > 0 \) and \(\gamma \in \mathbb{R} \), then

\[
c^*(t) = \frac{\left[\mathbb{E}(z_T^*(t)^{\gamma+1}) \right]^{-\frac{1}{\gamma}}}{\int_0^T \left[\mathbb{E}(z_T^*(t)^{\gamma+1}) \right]^{-\frac{1}{\gamma}} d\alpha(t)}
\]

and for \(f'(x) = \ln(x) \),

\[
c^*(t) = \frac{e^{-\mathbb{E}(z_T^*(t) \ln z_T^*(t))}}{\int_0^T e^{-\mathbb{E}(z_T^*(t) \ln z_T^*(t))} d\alpha(t)}.
\]
A change-point Black-Scholes model

- \(L \) and \(\tilde{L} \) are continuous Levy processes with characteristics \((b, c, 0)\) and \((\tilde{b}, c, 0)\) respectively.

- Initial models are complete, with a unique equivalent martingale measure which defines a unique price for options.

- In our change-point situation the martingale measure is not unique, but we have an infinite set of martingale measures of the form

\[
\frac{dQ_t}{dP_t}(X) = c(\tau) \exp \left(\int_0^t \beta_s dX_s^c - \frac{1}{2} \int_0^t \beta_s^2 c ds \right)
\]

with \(E[c(\tau)] = 1 \) and

\[
\beta_s = -\frac{1}{c} \left[(b + c/2) I_{[0,\tau]}(s) + (\tilde{b} + c/2) I_{[\tau,\infty]}(s) \right]
\]
A change-point Black-Scholes model

- L and \tilde{L} are continuous Levy processes with characteristics $(b, c, 0)$ and $(\tilde{b}, c, 0)$ respectively.

- Initial models are complete, with a unique equivalent martingale measure which defines a unique price for options.

- In our change-point situation the martingale measure is not unique, but we have an infinite set of martingale measures of the form

$$
\frac{dQ_t}{dP_t}(X) = c(\tau) \exp \left(\int_0^t \beta_s dX_s^c - \frac{1}{2} \int_0^t \beta_s^2 c ds \right)
$$

with $E[c(\tau)] = 1$ and

$$
\beta_s = -\frac{1}{c} \left[(b + c/2) I_{[0,\tau]}(s) + (\tilde{b} + c/2) I_{[\tau_1, \infty]}(s) \right]
$$
A change-point Black-Scholes model

- L and \tilde{L} are continuous Levy processes with characteristics $(b, c, 0)$ and $(\tilde{b}, c, 0)$ respectively.

- Initial models are complete, with a unique equivalent martingale measure which defines a unique price for options.

- In our change-point situation the martingale measure is not unique, but we have an infinite set of martingale measures of the form

$$\frac{dQ_t}{dP_t}(X) = c(\tau) \exp \left(\int_0^t \beta_s dX^c_s - \frac{1}{2} \int_0^t \beta_s^2 c ds \right)$$

with $E[c(\tau)] = 1$ and

$$\beta_s = -\frac{1}{c} \left[(b + c/2) I_{[0, \tau]}(s) + (\tilde{b} + c/2) I_{[\tau, +\infty)}(s) \right]$$
A change-point Black-Scholes model

1. If for example \(f'(x) = ax^\gamma \), applying Theorem, we get

\[
c^*(t) = \frac{e^{-\gamma+1 \over 2c}((b\gamma/c)^2t+(\bar{b}+c/2)^2(T-t))}{\int_0^T e^{-\gamma+1 \over 2c}((b\gamma/c)^2t+(\bar{b}+c/2)^2(T-t)) \, d\alpha(t)}
\]

2. If \(f'(x) = \ln(x) \),

\[
c^*(t) = \frac{e^{-1 \over 2c}((b\gamma/c)^2t+(\bar{b}+c/2)^2(T-t))}{\int_0^T e^{-1 \over 2c}((b\gamma/c)^2t+(\bar{b}+c/2)^2(T-t)) \, d\alpha(t)}
\]
A change-point Black-Scholes model

- If for example $f'(x) = ax^\gamma$, applying Theorem, we get

$$c^*(t) = \frac{e^{-\frac{\gamma+1}{2c}((b+c/2)^2t+(\tilde{b}+c/2)^2(T-t))}}{\int_0^Te^{-\frac{\gamma+1}{2c}((b+c/2)^2t+(\tilde{b}+c/2)^2(T-t))}d\alpha(t)}$$

- If $f'(x) = \ln(x)$,

$$c^*(t) = \frac{e^{-\frac{1}{2c}((b+c/2)^2t+(\tilde{b}+c/2)^2(T-t))}}{\int_0^Te^{-\frac{1}{2c}((b+c/2)^2t+(\tilde{b}+c/2)^2(T-t))}d\alpha(t)}$$
Optimal strategies in a change-point situation

- We denote by \((\beta, Y)\) and \((\tilde{\beta}, \tilde{Y})\) the Girsanov parameters corresponding to the changes of measure from \(P\) and \(\tilde{P}\) to the \(f\)-divergence minimal measures \(Q^*\) and \(\tilde{Q}^*\) respectively.

- Then the first Girsanov parameter for the change of the measure \(P\) to \(Q^*\) will be:

 \[
 \beta_t = \beta I_{[0,\tau]}(t) + \tilde{\beta} I_{\tau, +\infty}(t)
 \]

- For \(0 \leq t \leq T\) we denote

 \[
 z^*_t = \zeta^*_t I_{[0,\tau]}(t) + \zeta^*_\tau \tilde{\zeta}^*_\tau I_{\tau, +\infty}(t)
 \]

where \(\zeta^*, \tilde{\zeta}^*\) are the densities of \(Q^*\) and \(\tilde{Q}^*\) with respect to \(P\) and \(\tilde{P}\).
Optimal strategies in a change-point situation

- We denote by \((\beta, Y)\) and \((\tilde{\beta}, \tilde{Y})\) the Girsanov parameters corresponding to the changes of measure from \(P\) and \(\tilde{P}\) to the \(f\)-divergence minimal measures \(Q^*\) and \(\tilde{Q}^*\) respectively.
- Then the first Girsanov parameter for the change of the measure \(P\) to \(Q^*\) will be:

\[
\beta_t = \beta I_{[0,\tau]}(t) + \tilde{\beta} I_{\tau, +\infty}(t)
\]

- For \(0 \leq t \leq T\) we denote

\[
z_t^* = \zeta_t^* I_{[0,\tau]}(t) + \tilde{\zeta}_t^* \frac{\tilde{\zeta}_T}{\zeta_T} I_{\tau, +\infty}(t)
\]

where \(\zeta^*, \tilde{\zeta}^*\) are the densities of \(Q^*\) and \(\tilde{Q}^*\) with respect to \(P\) and \(\tilde{P}\).
Optimal strategies in a change-point situation

We denote by \((\beta, Y)\) and \((\tilde{\beta}, \tilde{Y})\) the Girsanov parameters corresponding to the changes of measure from \(P\) and \(\tilde{P}\) to the \(f\)-divergence minimal measures \(Q^*\) and \(\tilde{Q}^*\) respectively.

Then the first Girsanov parameter for the change of the measure \(P\) to \(Q^*\) will be:

\[\beta_t = \beta I_{[0,\tau]}(t) + \tilde{\beta} I_{\tau,+\infty}(t) \]

For \(0 \leq t \leq T\) we denote

\[z^*_t = \zeta^* I_{[0,\tau]}(t) + \tilde{\zeta}^* \frac{\zeta^*}{\tilde{\zeta}^*} I_{\tau,+\infty}(t) \]

where \(\zeta^*, \tilde{\zeta}^*\) are the densities of \(Q^*\) and \(\tilde{Q}^*\) with respect to \(P\) and \(\tilde{P}\).
Optimal strategies in a change-point situation

- The Radon-Nikodym derivative of \mathbb{Q}^* with respect to \mathbb{P} is

$$Z_T^*(\tau) = c^*(\tau)z_T^*$$

where $c^*(\tau)$ is defined in Theorem 1 and

- We denote for $0 \leq v \leq T$

$$q^{(v)}(t, x) = \mathbb{E}[(z_{T-t}^*((q - t)^+))^2f''(x\lambda z_{T-t}^*((q - t)^+))]$$
Optimal strategies in a change-point situation

- The Radon-Nikodym derivative of Q^* with respect to P is

$$Z^*_T(\tau) = c^*(\tau)z^*_T$$

where $c^*(\tau)$ is defined in Theorem 1 and

- We denote for $0 \leq \nu \leq T$

$$q^{(\nu)}(t, x) = \mathbb{E}[(z^*_T-t((q-t)^+))^2f''(x\lambda z^*_T-t((q-t)^+))]$$
Optimal strategies in a change-point situation

Theorem

Let f be a three times continuously differentiable strictly convex function satisfying (H1), (H2), (H3) and mentioned integrability conditions for Q and \tilde{Q}. Then there exists an F-optimal strategy ϕ^* for our change-point model. In addition, it is \hat{F}-adapted, and

$$
\phi_t^* = -\lambda \beta_t Z_{t-}^*(\tau) S_{t-} q^{(\tau)}(t, Z_{t-}^*(\tau))
$$

In particular, when $f''(x) = ax^\gamma$ with $a > 0$, we have:

$$
\phi_t^* = \frac{a \lambda^{\gamma+1} \beta_t Z_{t-}^*(\tau)}{S_{t-}} \mathbb{E}([Z_{T-t}^* ((q - t)^+) \gamma + 2)|q = \tau]
$$